- #1
NoLimits
- 10
- 0
Hi,
I am having trouble with completing the square in this question. I've looked at several online videos and I am still confused as to why I am not getting an answer that makes sense. I keep ending up with complex numbers and I am not sure what the next step to take is.
Determine the equation of the tangent to the curve defined by f(x)=x^2-6x+14 at (1, 9) and then sketch it.
[tex]f(x)=x^2-6x+14[/tex]
[tex]f'(1) = lim_h→0 \frac{f(x+h)-f(x)}{h}[/tex]
[tex]= lim_h→0 \frac{[(1+h)^2-6(1+h)+14]-[1^2-6(1)+14]}{h}[/tex]
[tex]= lim_h→0 \frac{[1+h+h^2+h+14]-[1-6+14]}{h}[/tex]
[tex]= lim_h→0 \frac{[1+2h+h^2+14]-[1-6+14]}{h}[/tex]
[tex]= lim_h→0 \frac{2h+h^2-6}{h}[/tex]
[tex]= lim_h→0 (2+h-6)[/tex]
[tex]= 2+(0)-6[/tex]
[tex]= -4[/tex]
Determine equation of tangent line:
[tex]y = mx+b[/tex]
[tex]9 = (-4)(-1) + b[/tex]
[tex]9 = -4 + b[/tex]
[tex]4 + 9 = b[/tex]
[tex]b = 13[/tex]
Therefore, the equation of the tangent to the curve is y= -4x + 13.
Completing the square:
[tex]x^2 - 6x + 14 = 0[/tex]
[tex]x^2 - 6x + 9 + 14 - 9 = 0[/tex]
[tex](x-3)^2 + 14 - 9 = 0[/tex]
[tex](x-3)^2 + 5 = 0[/tex]
[tex](x-3)^2 = -5[/tex]
[tex]
\sqrt{(x-3)^2} = +- \sqrt{-5}
[/tex]
[tex]x-3 = \sqrt{5}i[/tex]
[tex]x = \sqrt{5}i + 3[/tex]
and
[tex]x-3 = -\sqrt{5}i[/tex]
[tex]x = -\sqrt{5}i + 3[/tex]
I am having trouble with completing the square in this question. I've looked at several online videos and I am still confused as to why I am not getting an answer that makes sense. I keep ending up with complex numbers and I am not sure what the next step to take is.
Homework Statement
Determine the equation of the tangent to the curve defined by f(x)=x^2-6x+14 at (1, 9) and then sketch it.
Homework Equations
[tex]f(x)=x^2-6x+14[/tex]
The Attempt at a Solution
[tex]f'(1) = lim_h→0 \frac{f(x+h)-f(x)}{h}[/tex]
[tex]= lim_h→0 \frac{[(1+h)^2-6(1+h)+14]-[1^2-6(1)+14]}{h}[/tex]
[tex]= lim_h→0 \frac{[1+h+h^2+h+14]-[1-6+14]}{h}[/tex]
[tex]= lim_h→0 \frac{[1+2h+h^2+14]-[1-6+14]}{h}[/tex]
[tex]= lim_h→0 \frac{2h+h^2-6}{h}[/tex]
[tex]= lim_h→0 (2+h-6)[/tex]
[tex]= 2+(0)-6[/tex]
[tex]= -4[/tex]
Determine equation of tangent line:
[tex]y = mx+b[/tex]
[tex]9 = (-4)(-1) + b[/tex]
[tex]9 = -4 + b[/tex]
[tex]4 + 9 = b[/tex]
[tex]b = 13[/tex]
Therefore, the equation of the tangent to the curve is y= -4x + 13.
Completing the square:
[tex]x^2 - 6x + 14 = 0[/tex]
[tex]x^2 - 6x + 9 + 14 - 9 = 0[/tex]
[tex](x-3)^2 + 14 - 9 = 0[/tex]
[tex](x-3)^2 + 5 = 0[/tex]
[tex](x-3)^2 = -5[/tex]
[tex]
\sqrt{(x-3)^2} = +- \sqrt{-5}
[/tex]
[tex]x-3 = \sqrt{5}i[/tex]
[tex]x = \sqrt{5}i + 3[/tex]
and
[tex]x-3 = -\sqrt{5}i[/tex]
[tex]x = -\sqrt{5}i + 3[/tex]