- #1
CrypticWeirdo
- 1
- 0
Homework Statement
A charge +q of mass m is free to move along the x axis. It is in equilibrium at the origin, midway between a pair of identical point charges, +Q, located on the x axis at x = +b and x = -b. The charge at the origin is displaced a small distance x << a and released. Show that it can undergo simple harmonic motion with an angular frequency
omega=(4kqQ/(mb^3))^(1/2)
Homework Equations
E=ke(q/r2)
(1+c)n is approximately equal to 1+nc
a=x(omega)^2
The Attempt at a Solution
Well, I'm not really asking for a solution per se. I get the question, got the correct answer, how it was done; what I want to know is why my method is wrong.
I got it by first using Coulomb's law to set up a force comparison, between the point-charge in the origin, and one of the point charges next to it. So...
F=kqQ/b2=ma
Where I substituted a for x(omega)^2.
Solving for omega got me close to the correct answer, but my TA could not explain why my method was wrong...so I'm curious why.
My answer was omega=(kqQ/(mb^3))^(1/2)
Any takers?