- #1
Buffu
- 849
- 146
Why does every subfield of Complex number have a copy of rational numbers ?
Here's my proof,
Let ##F## is a subield of ##\Bbb C##. I can assume that ##0, 1 \in F##.
Lets say a number ##p \in F##, then ##1/p \ p \ne 0## and ##-p## must be in ##F##.
Now since ##F## is subfield of ##\Bbb C## it has the operation of mutiplication and addition.
So for some ##q \in F## there exist ##q/p## and ##p/q##( ##p,q \ne 0## ) in ##F##. Therefore every number of form ##p/q, q \ne 0## exist in ##F##.
Is this enough ?
Here's my proof,
Let ##F## is a subield of ##\Bbb C##. I can assume that ##0, 1 \in F##.
Lets say a number ##p \in F##, then ##1/p \ p \ne 0## and ##-p## must be in ##F##.
Now since ##F## is subfield of ##\Bbb C## it has the operation of mutiplication and addition.
So for some ##q \in F## there exist ##q/p## and ##p/q##( ##p,q \ne 0## ) in ##F##. Therefore every number of form ##p/q, q \ne 0## exist in ##F##.
Is this enough ?