- #1
Old Guy
- 103
- 1
Homework Statement
Jackson Section 5.10, the uniformly magnetized sphere, I'm trying to fill in the steps from his first equation to Equation 5.104. I get the same potential except I am lacking the cos[tex]\theta[/tex] term. My work shown below.
Homework Equations
The Attempt at a Solution
[tex]$\begin{array}{l}
\Phi _M = \frac{{M_0 a^2 }}{{4\pi }}\int {\frac{{\cos \theta '}}{{\left| {\user1{x - x'}} \right|}}d\Omega '} \\
\Phi _M = \frac{{M_0 a^2 }}{2}\int {\frac{1}{{\left| {\user1{x - x'}} \right|}}\cos \theta 'd\left( {\cos \theta '} \right)} \\
\Phi _M = \frac{{M_0 a^2 }}{2}\int {\left[ {\sum\limits_{l = 0}^\infty {\frac{{r_ < ^l }}{{r_ > ^{l + 1} }}P_l \left( {\cos \theta } \right)} } \right]P_1 \left( {\cos \theta '} \right)d\left( {\cos \theta '} \right)} \\
\Phi _M = \frac{{M_0 a^2 }}{2}\int {\frac{{r_ < ^{} }}{{r_ > ^2 }}P_1 \left( {\cos \theta } \right)P_1 \left( {\cos \theta '} \right)d\left( {\cos \theta '} \right)} \\
\Phi _M = \frac{{M_0 a^2 }}{2}\frac{{r_ < ^{} }}{{r_ > ^2 }}\int {P_1 \left( {\cos \theta } \right)P_1 \left( {\cos \theta '} \right)d\left( {\cos \theta '} \right)} \\
\Phi _M = \frac{{M_0 a^2 }}{2}\frac{{r_ < ^{} }}{{r_ > ^2 }}\left( {\frac{2}{{2 + 1}}} \right) \\
\Phi _M = \frac{{M_0 a^2 }}{3}\frac{{r_ < ^{} }}{{r_ > ^2 }} \\
\end{array}$[/tex]