- #1
facenian
- 436
- 25
Homework Statement
Evaluate <x^2> for the wave function [itex]\psi(x)=\int_{-\infty}^{\infty}dk exp(-|k|/k_0)exp(ikx)[/itex]
My calculation yields a negative answer and I can't find my error
Homework Equations
[tex]|\psi(x)|^2=\int_{-\infty}^{\infty}dkexp(-|k|/k_0)\int_{-\infty}^{\infty}dk'exp(-|k'|/k_0)exp(i(k-k')x)[/tex]
[tex]<x^2>=\int_{-\infty}^{\infty}dx|\psi(x)|^2x^2[/tex]
[tex]\int_{-\infty}^{\infty}dxx^2exp(i(k-k')x)=-\frac{d^2}{dk^2}\int_{-\infty}^{\infty}dxexp(i(k-k')x)=-2\pi\delta''(k-k')[/tex]
The Attempt at a Solution
[tex]<x^2>=\int_{-\infty}^{\infty}dk'exp(-|k'|/k_0)\int_{-\infty}^{\infty}dkexp(-|k|/k_0)\int_{-\infty}^{\infty}dxx^2exp(i(k-k')x)[/tex]
[tex]<x^2>=\int_{-\infty}^{\infty}dk'exp(-|k'|/k_0)\int_{-\infty}^{\infty}dkexp(-|k|/k_0)(-2\pi\delta''(k-k'))[/tex]
[tex]<x^2>=-2\pi\int_{-\infty}^{\infty}dk'exp(-|k'|/k_0) \frac{1}{k_0^2}exp(-|k'|/k_0) [/tex]
[tex]<x^2>=-\frac{2\pi}{k_0^2}\int_{-\infty}^{\infty}dk'exp(-2|k'|/k_0)=-\2\pi/k_0[/tex]