- #1
physicsRookie
- 5
- 0
Show that
[tex]\lim_{n \to \infty} \frac{n!}{a^{2n+1}} = \infty \qquad a \in \mathbb{N}[/tex]
Here is my try:
Take [tex] a_n = a^{2n+1}/n![/tex] . Since
[tex]
\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{a^{2(n+1)+1}/\,(n+1)!}{a^{2n+1}/\,n!} = \lim_{n \to \infty} \frac{a^{2}}{n+1} = 0 < 1 [/tex](D'Alembert test),
the series [tex]\sum_{n=0}^\infty a_n[/tex] is convergent, i.e.[tex]
\lim_{n \to \infty} a_n = 0.
[/tex]
Then
[tex]
\lim_{n \to \infty} \frac{n!}{a^{2n+1}} = \lim_{n \to \infty} \frac{1}{a_n} = \infty.
[/tex]
Correct? Is there another way to prove it?
Thanks.
[tex]\lim_{n \to \infty} \frac{n!}{a^{2n+1}} = \infty \qquad a \in \mathbb{N}[/tex]
Here is my try:
Take [tex] a_n = a^{2n+1}/n![/tex] . Since
[tex]
\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{a^{2(n+1)+1}/\,(n+1)!}{a^{2n+1}/\,n!} = \lim_{n \to \infty} \frac{a^{2}}{n+1} = 0 < 1 [/tex](D'Alembert test),
the series [tex]\sum_{n=0}^\infty a_n[/tex] is convergent, i.e.[tex]
\lim_{n \to \infty} a_n = 0.
[/tex]
Then
[tex]
\lim_{n \to \infty} \frac{n!}{a^{2n+1}} = \lim_{n \to \infty} \frac{1}{a_n} = \infty.
[/tex]
Correct? Is there another way to prove it?
Thanks.
Last edited: