- #1
The Head
- 144
- 2
I was thinking about ballistic pendulums and the symmetry they exhibit. In the simplest case, you have one ball that begins at a certain height and collides with another ball at rest. You can calculate via conservation of momentum and energy the new velocities and max vertical displacements. Then, if you let the system continue and the second collision occurs, the first ball will be propelled to its initial height. This makes sense in terms of symmetry.
However, when I mathematically solve it, I technically get two solutions for what happens after both collisions. When solving for the velocity of the second ball, it factors and I get a zero and a non-zero solution. For the first collision I know we choose the non-zero solution because it moves. For the second, we choose the zero solution because of symmetry. But is there a better reason for this?
If it's useful, in the simple case where the balls are equal masses, after substituting my momentum equation into the energy one, I worked out that v_2(v_2 - sqrt(2gh))=0. I'm not concerned about the actual values of the velocity, but it appears to say that either v_2 = 0 or sqrt(2gh), where 'h' is the initial height that ball one was raised to. The same equation occurs after the second collision. How do we know to choose v_2 = sqrt(2gh) for the first collision and v_2=0 for the second?
However, when I mathematically solve it, I technically get two solutions for what happens after both collisions. When solving for the velocity of the second ball, it factors and I get a zero and a non-zero solution. For the first collision I know we choose the non-zero solution because it moves. For the second, we choose the zero solution because of symmetry. But is there a better reason for this?
If it's useful, in the simple case where the balls are equal masses, after substituting my momentum equation into the energy one, I worked out that v_2(v_2 - sqrt(2gh))=0. I'm not concerned about the actual values of the velocity, but it appears to say that either v_2 = 0 or sqrt(2gh), where 'h' is the initial height that ball one was raised to. The same equation occurs after the second collision. How do we know to choose v_2 = sqrt(2gh) for the first collision and v_2=0 for the second?