- #1
Puzzedd
- 2
- 0
Using summation(([tex]\stackrel{n}{k}[/tex])xkyn-k) = (x+y)n, I let x = y = 1. This should then result in summation(([tex]\stackrel{n}{k}[/tex])*1*1) = (1 + 1)n = 2n.
Expanding the summation, I get
([tex]\stackrel{n}{0}[/tex]) + ([tex]\stackrel{n}{1}[/tex]) + ... +([tex]\stackrel{n}{n}[/tex]) = 2n.
Solving this results in
[tex]\frac{n!}{0!(n-0)!}[/tex] + [tex]\frac{n!}{1!(n-1)!}[/tex] + [tex]\frac{n!}{2!(n-2)!}[/tex] + ... + [tex]\frac{n!}{(n-1)!(n-(n-1))!}[/tex] + [tex]\frac{n!}{n!(n-n)!}[/tex] = 2n
1 + n + [tex]\frac{n(n-1)}{2!}[/tex] + [tex]\frac{n(n-1)(n-2)}{3!}[/tex] + ... + n + 1 = 2n
2 + 2n + n(n-1) + [tex]\frac{n(n-1)(n-2)}{3}[/tex] + ... = 2n
The issue I am having is that when I plug values of n into the left side I do not get the same answer with the right side.
n = 0 results in 2 + 2(0) + ... = 2, not 20
n = 1 results in 2 + 2(1) + 1(1-1) + ... = 4, not 21
n = 2 results in 2 + 2(2) + 2(2-1) + [tex]\frac{2(2-1)(2-2)}{3}[/tex] + ... = 8, not 22
n = 3 results in 2 + 2(3) + 3(3-1) + [tex]\frac{3(3-1)(3-2)}{3}[/tex] + ... = 16, not 23
This seems as if ([tex]\stackrel{n}{0}[/tex]) + ([tex]\stackrel{n}{1}[/tex]) + ... +([tex]\stackrel{n}{n}[/tex]) = 2n should really be
([tex]\stackrel{n}{0}[/tex]) + ([tex]\stackrel{n}{1}[/tex]) + ... +([tex]\stackrel{n}{n}[/tex]) = 2n+1
Can anyone tell me why solving this summation is not consistent with the binomial theorem?
Expanding the summation, I get
([tex]\stackrel{n}{0}[/tex]) + ([tex]\stackrel{n}{1}[/tex]) + ... +([tex]\stackrel{n}{n}[/tex]) = 2n.
Solving this results in
[tex]\frac{n!}{0!(n-0)!}[/tex] + [tex]\frac{n!}{1!(n-1)!}[/tex] + [tex]\frac{n!}{2!(n-2)!}[/tex] + ... + [tex]\frac{n!}{(n-1)!(n-(n-1))!}[/tex] + [tex]\frac{n!}{n!(n-n)!}[/tex] = 2n
1 + n + [tex]\frac{n(n-1)}{2!}[/tex] + [tex]\frac{n(n-1)(n-2)}{3!}[/tex] + ... + n + 1 = 2n
2 + 2n + n(n-1) + [tex]\frac{n(n-1)(n-2)}{3}[/tex] + ... = 2n
The issue I am having is that when I plug values of n into the left side I do not get the same answer with the right side.
n = 0 results in 2 + 2(0) + ... = 2, not 20
n = 1 results in 2 + 2(1) + 1(1-1) + ... = 4, not 21
n = 2 results in 2 + 2(2) + 2(2-1) + [tex]\frac{2(2-1)(2-2)}{3}[/tex] + ... = 8, not 22
n = 3 results in 2 + 2(3) + 3(3-1) + [tex]\frac{3(3-1)(3-2)}{3}[/tex] + ... = 16, not 23
This seems as if ([tex]\stackrel{n}{0}[/tex]) + ([tex]\stackrel{n}{1}[/tex]) + ... +([tex]\stackrel{n}{n}[/tex]) = 2n should really be
([tex]\stackrel{n}{0}[/tex]) + ([tex]\stackrel{n}{1}[/tex]) + ... +([tex]\stackrel{n}{n}[/tex]) = 2n+1
Can anyone tell me why solving this summation is not consistent with the binomial theorem?