- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wasntme)
I want to find the Taylor series of the function $f(x)=\log(1+x), x \in (-1,+\infty)$. We take $\xi=0, I=(-1,1)$
It is: $$f'(x)=(1+x)^{-1}, f''(x)=-1 \cdot (1+x)^{-2}, f'''(x)=2 \cdot (1+x)^{-3} , f^{(4)}(x)=-6 \cdot (1+x)^{-4}, f^{(5)}(x)=24(1+x)^{-5}$$
So,we see that $\frac{d^n}{dx^n} f(x)=\frac{(-1)^{n-1} \cdot (n-1)!}{(1+x)^n}$
So,the possible Taylor series is: $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n!} x^n$
To check if it is the right Taylor series,we have to check if the radius of convergence converges to $0$.
$R_{n,\xi} (n,\zeta)=\frac{(-1)^n}{(n+1)(1+\zeta)^{n+1}}x^{n+1}, \zeta \in [x,0] \text{ or } \zeta \in [0,x]$
I want to find the Taylor series of the function $f(x)=\log(1+x), x \in (-1,+\infty)$. We take $\xi=0, I=(-1,1)$
It is: $$f'(x)=(1+x)^{-1}, f''(x)=-1 \cdot (1+x)^{-2}, f'''(x)=2 \cdot (1+x)^{-3} , f^{(4)}(x)=-6 \cdot (1+x)^{-4}, f^{(5)}(x)=24(1+x)^{-5}$$
So,we see that $\frac{d^n}{dx^n} f(x)=\frac{(-1)^{n-1} \cdot (n-1)!}{(1+x)^n}$
So,the possible Taylor series is: $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n!} x^n$
To check if it is the right Taylor series,we have to check if the radius of convergence converges to $0$.
$R_{n,\xi} (n,\zeta)=\frac{(-1)^n}{(n+1)(1+\zeta)^{n+1}}x^{n+1}, \zeta \in [x,0] \text{ or } \zeta \in [0,x]$
- $0<x<1$ :
$$|R_{n,\xi} (n,\zeta)| \leq \frac{x^{n+1}}{(n+1)(1+\zeta)^{n+1} } \leq \frac{1}{n+1} \to 0$$
- $-1<x<0$:
$$|R_{n,\xi} (n,\zeta)|=|\frac{1}{n!} \int_{0}^x \frac{ (x-t)^n (-1)^n n!}{(1+t)^{n+1}}|= \int_0^x \frac{(t-x)^n}{(1+t)^{n+1}} dt $$
According to my notes, $$(\frac{t-x}{1+t})^n \leq |x^n|, \forall t \in [x,0] $$
But... why does the inequality $(\frac{t-x}{1+t})^n \leq |x^n|, \forall t \in [x,0] $ stand? And,also why $t \in [x,0] $ ? (Thinking)