I Why does the integral of sine of x^2 from - infinity to + infinity diverge?

  • I
  • Thread starter Thread starter jaumzaum
  • Start date Start date
  • Tags Tags
    Integral Sine
AI Thread Summary
The integral of sine of x^2 from -infinity to +infinity is discussed, noting that while it converges to sqrt(pi/2), the approach to evaluate it leads to divergent results. The integral is expressed in terms of the complex exponential function, and attempts to apply Fubini's theorem reveal issues with absolute integrability. The discussion highlights the confusion surrounding the limit of e^(iM) as M approaches infinity, questioning why it is considered zero despite its non-convergence. A suggestion is made to use line integrals in the complex plane for a proper evaluation. Ultimately, the conversation emphasizes the importance of understanding the conditions under which certain mathematical techniques can be applied.
jaumzaum
Messages
433
Reaction score
33
Hello guys. I was trying to evaluate the integral of sine of x^2 from - infinity to + infinity and ran into some inconsistencies. I know this integral converges to sqrt(pi/2). Can someone help me to figure out why I am getting a divergent answer?

$$ I = \int_{-\infty}^{+\infty} sin(x^2) dx = Im(\int_{-\infty}^{+\infty} e^{ix^2} dx) $$

Now let's call:

$$ A=\int_{-\infty}^{+\infty} e^{ix^2} dx $$
$$ A^2=\int_{-\infty}^{+\infty} e^{ix^2} dx \int_{-\infty}^{+\infty} e^{iy^2} dy $$
$$ A^2=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{i(x^2+y^2)} dx dy $$
$$ A^2=\int_{0}^{2\pi} \int_{0}^{+\infty} e^{ir^2}r dr d\theta $$
$$ A^2= -i\pi \left. e^{ir^2} \right|_0^{\infty} $$
$$ A^2= -i\pi (e^{i\infty}-1) $$

But we know ## lim_{M->\infty} e^{iM}## does not converge, so A^2 would not converge either!

However, if we consider ##e^{i\infty}## as being zero, we get:

$$A^2= i\pi$$
$$A=1/\sqrt{2}\pi(1+i)$$
$$I=\sqrt{\pi/2}$$

But why is ##e^{i\infty}## considered zero if ## lim_{M->\infty} e^{iM}## does not exist?
 
Last edited:
Mathematics news on Phys.org
I delete my message.
[EDIT]
Going forward your way of
A^2=i\pi(e^{iR^2}-1), R\rightarrow \infty
=-\pi \sin R^2 - i\pi(1-\cos R^2)=\pi \sqrt{2} \sqrt{1-\cos R^2}e^{i\theta}
where
\theta = \arctan \frac{1-\cos R^2}{\sin R^2}+\pi
A=\sqrt{\pi \sqrt{2} \sqrt{1-\cos R^2}}e^{i\theta/2}
I=Im\ A= \sqrt{\pi \sqrt{2} \sqrt{1-\cos R^2}} sin (\theta/2)
I let Wolfram plot the graph. I draw red line y=##1/\sqrt{2}## of the expected limit.
plot integral 211226.png
 
Last edited:
This might be how to do it properly, using line integrals in the complex plane.

 
An informal way to do it would be to look at the integral: $$\int_0^\infty \sin (x^2) dx = \lim_{n \rightarrow \infty}\int_0^{\sqrt{n\pi}}\sin(x^2)dx$$Then follow your technique to get
$$A^2 = \lim_{n \rightarrow \infty}\int_0^{2\pi} \int_{-2n\pi}^{2n\pi}e^{ir^2}r dr d\theta$$Etc.
 
Last edited:
I think there is an error in ##\int_{-\infty}^{+\infty} e^{ix^2} dx \int_{-\infty}^{+\infty} e^{iy^2} dy =\int_{0}^{2\pi} \int_{0}^{\infty} e^{ir^2} r dr d\theta. ##

It looks like you're trying to apply Fubini's theorem, but that requires the integrand to be absolutely integrable, which ##e^{i(x^2+y^2)}## is not. If you try to write out the argument formally with limits, you should see what goes wrong- your integral for ##A^2## would be over a large rectangle, but you would want it to be over a disk for polar coordinates to be useful. This distinction wouldn't matter in the case that your function is absolutely integrable, because then the difference integrals over the two domains would tend to zero.
 
  • Like
Likes mfb and PeroK
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top