- #1
Lambda96
- 223
- 75
- Homework Statement
- Proof ##\sum\limits_{i=1}^{n} x_i \frac{\partial f}{\partial x_i}(x)=n f(x)##
- Relevant Equations
- Chain rule
Hi,
I am having problems with the following task:
My lecturer gave me the tip that I should apply the multidimensional chain rule to obtain the following transformation ##\sum\limits_{i=1}^{n} \frac{\partial f}{\partial x_i}(x) \cdot x_i= \frac{d f(tx)}{dt} \big|_{t=1}##
Unfortunately, I don't know why the two terms should be equal because of the chain rule. There is a sum on the left and a derivative on the right side.
One more thing, in the 1D case the chain rule is ##[f(g(x))]'=f'(g(x)) \cdot g'(x)## but the term ##g'(x)## for the multidimensional case is missing on the right-hand side.
I am having problems with the following task:
My lecturer gave me the tip that I should apply the multidimensional chain rule to obtain the following transformation ##\sum\limits_{i=1}^{n} \frac{\partial f}{\partial x_i}(x) \cdot x_i= \frac{d f(tx)}{dt} \big|_{t=1}##
Unfortunately, I don't know why the two terms should be equal because of the chain rule. There is a sum on the left and a derivative on the right side.
One more thing, in the 1D case the chain rule is ##[f(g(x))]'=f'(g(x)) \cdot g'(x)## but the term ##g'(x)## for the multidimensional case is missing on the right-hand side.