- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
I want to show that for $A,B\in \mathbb{R}^{2\times 2}$ the $U=\{X\in \mathbb{R}^{2\times 2}\mid AX=XB\}$ is a vector subspace of $\mathbb{R}^{2\times 2}$.
We have that it is non-empty, since the zero matrix belongs to $U$ : $AO=O=OB$.
Let $X_1, X_2\in U$ then $AX_1=X_1B$ and $AX_2=X_2B$.
We have that $A(X_1+X_2)=AX_1+AX_2=X_1B+X_2B=(X_1+X_2)B$, and so $X_1+X_2\in U$.
Let $\lambda \in \mathbb{R}$.
We have that $A(\lambda X_1)=\lambda (AX_1)=\lambda (X_1B)=(\lambda X_1)B$,and so $\lambda X_1\in U$.
Is everything correct? (Wondering) Then when $A=\begin{pmatrix}a_1 & 0 \\ a_3 & a_4\end{pmatrix}$ and $B=\begin{pmatrix}b_1 & b_2 \\ 0 & b_4\end{pmatrix}$ I want to show that $$U=\{0\} \iff \{a_1, a_4\}\cap \{b_1, b_4\}=\emptyset$$
We have that $$AX=\begin{pmatrix}a_1 & 0 \\ a_3 & a_4\end{pmatrix}\begin{pmatrix}x_1 & x_2 \\ x_3 & x_4\end{pmatrix}=\begin{pmatrix}a_1x_1 & a_1x_2 \\ a_3x_1+a_4x_3 & a_3x_2+a_4x_4\end{pmatrix}$$
and
$$XB=\begin{pmatrix}x_1 & x_2 \\ x_3 & x_4\end{pmatrix}\begin{pmatrix}b_1 & b_2 \\ 0 & b_4\end{pmatrix}=\begin{pmatrix}x_1b_1 & x_1b_2+x_2b_4 \\ x_3b_1 & x_3b_2+x_4b_4\end{pmatrix}$$
So, $$AX=XB \Rightarrow \begin{pmatrix}a_1x_1 & a_1x_2 \\ a_3x_1+a_4x_3 & a_3x_2+a_4x_4\end{pmatrix}=\begin{pmatrix}x_1b_1 & x_1b_2+x_2b_4 \\ x_3b_1 & x_3b_2+x_4b_4\end{pmatrix} \\ \Rightarrow \left\{\begin{matrix}
a_1x_1=x_1b_1 \\
a_1x_2=x_1b_2+x_2b_4 \\
a_3x_1+a_4x_3=x_3b_1 \\
a_3x_2+a_4x_4=x_3b_2+x_4b_4
\end{matrix}\right.\Rightarrow \left\{\begin{matrix}
(a_1-b_1)x_1=0 \\
(a_1-b_4)x_2=x_1b_2 \\
a_3x_1=x_3(b_1-a_4) \\
a_3x_2=x_3b_2+x_4(b_4-a_4)
\end{matrix}\right.$$
For the direction $\Leftarrow$ we have that $\{a_1, a_4\}\cap \{b_1, b_4\}=\emptyset$, so we have the following:
Since $a_1\neq b_1$ it must be $(a_1-b_1)x_1=0 \Rightarrow x_1=0$.
From the second equation we have $(a_1-b_4)x_2=x_1b_2\Rightarrow (a_1-b_4)x_2=0$, since $a_1\neq b_4$ it follows that $x_2=0$.
From the third equation we have that $a_3x_1=x_3(b_1-a_4)\Rightarrow x_3(b_1-a_4)=0$, since $b_1\neq a_4$ it follows that $x_3=0$.
From the last equation we have $a_3x_2=x_3b_2+x_4(b_4-a_4)\Rightarrow 0=x_4(b_4-a_4)$, since $b_4\neq a_4$ it follows that $x_4=0$.
Therefore, the matrix $X$ is the zero matrix, and so $U=\{0\}$, right? (Wondering) How can we show the other direction? (Wondering)
When we have the zero matrix, doesn't it hold for every $A$ and $B$ ? (Wondering)
I want to show that for $A,B\in \mathbb{R}^{2\times 2}$ the $U=\{X\in \mathbb{R}^{2\times 2}\mid AX=XB\}$ is a vector subspace of $\mathbb{R}^{2\times 2}$.
We have that it is non-empty, since the zero matrix belongs to $U$ : $AO=O=OB$.
Let $X_1, X_2\in U$ then $AX_1=X_1B$ and $AX_2=X_2B$.
We have that $A(X_1+X_2)=AX_1+AX_2=X_1B+X_2B=(X_1+X_2)B$, and so $X_1+X_2\in U$.
Let $\lambda \in \mathbb{R}$.
We have that $A(\lambda X_1)=\lambda (AX_1)=\lambda (X_1B)=(\lambda X_1)B$,and so $\lambda X_1\in U$.
Is everything correct? (Wondering) Then when $A=\begin{pmatrix}a_1 & 0 \\ a_3 & a_4\end{pmatrix}$ and $B=\begin{pmatrix}b_1 & b_2 \\ 0 & b_4\end{pmatrix}$ I want to show that $$U=\{0\} \iff \{a_1, a_4\}\cap \{b_1, b_4\}=\emptyset$$
We have that $$AX=\begin{pmatrix}a_1 & 0 \\ a_3 & a_4\end{pmatrix}\begin{pmatrix}x_1 & x_2 \\ x_3 & x_4\end{pmatrix}=\begin{pmatrix}a_1x_1 & a_1x_2 \\ a_3x_1+a_4x_3 & a_3x_2+a_4x_4\end{pmatrix}$$
and
$$XB=\begin{pmatrix}x_1 & x_2 \\ x_3 & x_4\end{pmatrix}\begin{pmatrix}b_1 & b_2 \\ 0 & b_4\end{pmatrix}=\begin{pmatrix}x_1b_1 & x_1b_2+x_2b_4 \\ x_3b_1 & x_3b_2+x_4b_4\end{pmatrix}$$
So, $$AX=XB \Rightarrow \begin{pmatrix}a_1x_1 & a_1x_2 \\ a_3x_1+a_4x_3 & a_3x_2+a_4x_4\end{pmatrix}=\begin{pmatrix}x_1b_1 & x_1b_2+x_2b_4 \\ x_3b_1 & x_3b_2+x_4b_4\end{pmatrix} \\ \Rightarrow \left\{\begin{matrix}
a_1x_1=x_1b_1 \\
a_1x_2=x_1b_2+x_2b_4 \\
a_3x_1+a_4x_3=x_3b_1 \\
a_3x_2+a_4x_4=x_3b_2+x_4b_4
\end{matrix}\right.\Rightarrow \left\{\begin{matrix}
(a_1-b_1)x_1=0 \\
(a_1-b_4)x_2=x_1b_2 \\
a_3x_1=x_3(b_1-a_4) \\
a_3x_2=x_3b_2+x_4(b_4-a_4)
\end{matrix}\right.$$
For the direction $\Leftarrow$ we have that $\{a_1, a_4\}\cap \{b_1, b_4\}=\emptyset$, so we have the following:
Since $a_1\neq b_1$ it must be $(a_1-b_1)x_1=0 \Rightarrow x_1=0$.
From the second equation we have $(a_1-b_4)x_2=x_1b_2\Rightarrow (a_1-b_4)x_2=0$, since $a_1\neq b_4$ it follows that $x_2=0$.
From the third equation we have that $a_3x_1=x_3(b_1-a_4)\Rightarrow x_3(b_1-a_4)=0$, since $b_1\neq a_4$ it follows that $x_3=0$.
From the last equation we have $a_3x_2=x_3b_2+x_4(b_4-a_4)\Rightarrow 0=x_4(b_4-a_4)$, since $b_4\neq a_4$ it follows that $x_4=0$.
Therefore, the matrix $X$ is the zero matrix, and so $U=\{0\}$, right? (Wondering) How can we show the other direction? (Wondering)
When we have the zero matrix, doesn't it hold for every $A$ and $B$ ? (Wondering)
Last edited by a moderator: