- #1
Manasan3010
- 38
- 3
- Homework Statement
- Prove,
##\frac{1}{\log_{tan\ 1^\circ}(2021)} +\frac{1}{\log_{tan\ 2^\circ}(2021)} +\frac{1}{\log_{tan\ 3^\circ}(2021)} +...+\frac{1}{\log_{tan\ 89^\circ}(2021)} = 0 ##
- Relevant Equations
- -
The attempt at a solution
##
{\log_{2021}(tan\ 1^\circ)} +{\log_{2021}(tan\ 2^\circ)} +{\log_{2021}(tan\ 3^\circ)} +...+{\log_{2021}(tan\ 89^\circ)} = 0 \\
Antilog_{2021}[{\log_{2021}(tan\ 1^\circ)} +{\log_{2021}(tan\ 2^\circ)} +{\log_{2021}(tan\ 3^\circ)} +...+{\log_{2021}(tan\ 89^\circ)} ] = Antilog_{2021}[0]\\
tan\ 1^\circ + tan\ 2^\circ + tan\ 3^\circ +...+ tan\ 89^\circ = 1\\
arctan(tan\ 1^\circ + tan\ 2^\circ + tan\ 3^\circ +...+ tan\ 89^\circ = 1)\\
1^\circ +2^\circ +3^\circ +...+89^\circ = 45^\circ \\
\frac{89}{2} \times 90^\circ=45^\circ \\
##
Where did I make mistake?
I also want to know How to display a long equation in the same line in MathJax(Ex. 2nd line)
##
{\log_{2021}(tan\ 1^\circ)} +{\log_{2021}(tan\ 2^\circ)} +{\log_{2021}(tan\ 3^\circ)} +...+{\log_{2021}(tan\ 89^\circ)} = 0 \\
Antilog_{2021}[{\log_{2021}(tan\ 1^\circ)} +{\log_{2021}(tan\ 2^\circ)} +{\log_{2021}(tan\ 3^\circ)} +...+{\log_{2021}(tan\ 89^\circ)} ] = Antilog_{2021}[0]\\
tan\ 1^\circ + tan\ 2^\circ + tan\ 3^\circ +...+ tan\ 89^\circ = 1\\
arctan(tan\ 1^\circ + tan\ 2^\circ + tan\ 3^\circ +...+ tan\ 89^\circ = 1)\\
1^\circ +2^\circ +3^\circ +...+89^\circ = 45^\circ \\
\frac{89}{2} \times 90^\circ=45^\circ \\
##
Where did I make mistake?
I also want to know How to display a long equation in the same line in MathJax(Ex. 2nd line)
Last edited: