- #1
muissi97
- 1
- 1
- Homework Statement
- The emission spectrum of an unknown element contains two lines-one in the visible portion of the spectrum, and the other, ultraviolet. Based on figure 1.1 and on what you have learned about Niels Bohr's model of the atom, account for the difference in energy between these lines.
- Relevant Equations
- The energy of a particle increases inverse to its wavelength, or in other words, particles with shorter wavelengths have higher energy.
When the electron absorbs energy from some external source, it jumps to a higher orbit or energy level. A "jump" from one level to another is called an electron transition. The attraction of the nucleus eventually pulls the electron back to a lower energy level. When it does, the energy that the electron absorbed is emitted. The energy emitted by the atom, according to Bohr, is the difference in energy between the two energy levels that the electron occupied. In the case of hydrogen, the four lines of the visible spectrum correspond to the electron transitions shown in Figure 1.7.
The difference in energy between these two lines is that in the ultraviolet spectrum line, there is more energy because it has a shorter wavelength compared to the visible spectrum line as shown in figure 1.1 According to the Niels Bohr's model of the atom(figure 1.7) and figure 1.1, the least visible line with the shortest wavelength in the visible spectrum line is the violet line with a wavelength of 410.2 nm, this line carries the most energy in this spectrum, so the ultraviolet line must have a shorter wavelength than 410.2 nm for it to carry more energy than the visible spectrum. Also (in UV spectrum), the electron must jump to a higher energy level than the electron jump(transition) of the violet line.
I don't know if this is how to answer this question or if my answer is even correct. Please Help.