Why Doesn't Constant Center of Mass Velocity Reduce Degrees of Freedom?

AI Thread Summary
The discussion centers on the degrees of freedom in a system where a mass moves on a wedge without friction. Despite the center of mass having a constant velocity, the system retains two degrees of freedom due to the independent motions of the mass and the wedge under gravity. The relationship between the mass's motion and the wedge's position does not constitute a constraint that reduces degrees of freedom, as both components can still move independently. The equations of motion must account for these independent movements rather than simplifying the system to a single degree of freedom. Understanding this distinction is crucial for accurately applying Lagrangian formalism to the problem.
deuteron
Messages
64
Reaction score
14
Homework Statement
What are the constraints of the system?
Relevant Equations
.
1695823376364.png


Consider the above system, where both the wedge and the mass can move without friction. We want to get the equations of motion for the both of them using Lagrangian formalism, where the constraints in the solution sheet are given as:

$$y_2=0$$
$$\tan \alpha=\frac {y_1}{x_1-x_2}$$

However, since there is no net force on the system in the ##x-##direction, can't we also say that the center of mass has constant velocity, where we can choose an inertial frame in which ##\dot x_{cm}=0##, and thus

$$\dot x_{cm} =\frac {m_1\dot x_1 +m_2\dot x_2}{m_1+m_2}=0\ \Rightarrow\ m_1\dot x_2 = -m_2\dot x_2$$

which would reduce the number of degrees of freedom to ##1##?
 
Physics news on Phys.org
Okay, but you were asked for the equations of motion.
 
deuteron said:
Homework Statement: Find the equations of motion
Relevant Equations: .

View attachment 332662

Consider the above system, where both the wedge and the mass can move without friction. We want to get the equations of motion for the both of them using Lagrangian formalism, where the constraints in the solution sheet are given as:

$$y_2=0$$
$$\tan \alpha=\frac {y_1}{x_1-x_2}$$

However, since there is no net force on the system in the ##x-##direction, can't we also say that the center of mass has constant velocity, where we can choose an inertial frame in which ##\dot x_{cm}=0##, and thus

$$\dot x_{cm} =\frac {m_1\dot x_1 +m_2\dot x_2}{m_1+m_2}=0\ \Rightarrow\ m_1\dot x_2 = -m_2\dot x_2$$

which would reduce the number of degrees of freedom to ##1##?
Not really. The system has two degrees of freedom, but under gravity alone, the motion of the small block down the wedge is related to the motion of the wedge.
 
PeroK said:
Okay, but you were asked for the equations of motion.
The constraints were a sub-question, I changed it now, sorry :')
 
PeroK said:
Not really. The system has two degrees of freedom, but under gravity alone, the motion of the small block down the wedge is related to the motion of the wedge.
Why is the relationship not a constraint that reduces the number of degrees of freedom? Wouldn't we know the position of the wedge if we knew the position of the mass, using ##\dot x_{cm}=0##?
 
deuteron said:
Why is the relationship not a constraint that reduces the number of degrees of freedom? Wouldn't we know the position of the wedge if we knew the position of the mass, using ##\dot x_{cm}=0##?
Suppose you put a small block on a larger rectangular block on a smooth surface. The system, under gravity alone, does not move. That doesn't mean it has zero degrees of freedom. The blocks are still free to move independently.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top