- #1
javiergra24
- 19
- 0
Hi everybody
I'm writing a script in Python to solve the Blasius equation but it does not work (well, script works and it generates the plot), numerical results does not match with data I've seen in fluid mechanics books.
Please anyone could help me? Thank you very much
Script is
I'm writing a script in Python to solve the Blasius equation but it does not work (well, script works and it generates the plot), numerical results does not match with data I've seen in fluid mechanics books.
Please anyone could help me? Thank you very much
Script is
Code:
import sys, pylab, numpy
from pylab import *
from numpy import *
import matplotlib.pyplot as plt
deta=0.0001
total=10
e = []
f = []
g = []
h = []
fvec=0; gvec=0; hvec=0.3219
etavec=0.0
while etavec <= 10:
fvec = fvec + gvec * deta
gvec = gvec + hvec * deta
hvec = hvec -(1/2) * fvec * hvec * deta
etavec = etavec + deta
e.append(etavec)
f.append(fvec)
g.append(gvec)
h.append(hvec)
print etavec,fvec,gvec
numpy.savetxt("blasius.dat", transpose((e,f,g,h)),delimiter=' ')
pylab.figure()
pylab.plot(e,g)
pylab.plot(e,h)
xticklines = getp(gca(), 'xticklines')
yticklines = getp(gca(), 'yticklines')
xgridlines = getp(gca(), 'xgridlines')
ygridlines = getp(gca(), 'ygridlines')
xticklabels = getp(gca(), 'xticklabels')
yticklabels = getp(gca(), 'yticklabels')
#lines1 = pylab.plot(e,f)
lines2 = pylab.plot(e,g)
lines3 = pylab.plot(e,h)
#pylab.setp(lines1, color='b', linewidth=3.0)
pylab.setp(lines2, color='r', linewidth=3.0)
pylab.setp(lines3, color='k', linewidth=3.0)
setp(xticklines, 'linewidth', 3)
setp(yticklines, 'linewidth', 3)
setp(xgridlines, 'linestyle', '--')
setp(ygridlines, 'linestyle', '--')
setp(yticklabels, fontsize='xx-large')
setp(xticklabels, fontsize='xx-large')
xlabel('$\eta$',fontsize=30)
ylabel('$f(\eta) \quad \partial_{\eta} f(\eta) \quad \partial_{\eta \eta}f(\eta)$',fontsize=30)
axis([0.0,10,-0.9,20.9])
#legend( (lines1, lines2, lines3), ('$\f(\eta)$', '$\partial_{\eta} f(\eta)$', '$\partial_{\eta \eta}f(\eta)$'))
grid(True)
pylab.show()