- #1
ƒ(x)
- 328
- 0
Homework Statement
Show that
c(0) = [itex]\sigma[/itex][itex]^{2}[/itex]
Homework Equations
c([itex]\ell[/itex]) = [itex]\frac{1}{N-\ell}[/itex] [itex]\sum[/itex] y[itex]_{i}[/itex]y[itex]_{i+\ell}[/itex], with the summation going from i=1 to N-[itex]\ell[/itex]
y(i) = x(i)-[itex]\langle[/itex]x[itex]\rangle[/itex]
[itex]\langle[/itex]x[itex]\rangle[/itex]=[itex]\frac{1}{N}[/itex][itex]\sum[/itex]x(i)
[itex]\langle[/itex]x2[itex]\rangle[/itex]=[itex]\frac{1}{N}[/itex][itex]\sum[/itex]x(i)2
Edit: the other summations go from 1 to N
Edit: forgot sigma
[itex]\sigma[/itex]2 = ([itex]\langle[/itex]x2[itex]\rangle[/itex]-[itex]\langle[/itex]x[itex]\rangle[/itex])/(N-1)
The Attempt at a Solution
c(0) = [itex]\frac{1}{N}[/itex][itex]\sum[/itex]y(i)y(i)
= [itex]\frac{1}{N}[/itex][itex]\sum[/itex](x(i)2-2x(i)[itex]\langle[/itex]x[itex]\rangle[/itex]+[itex]\langle[/itex]x[itex]\rangle[/itex]2)
= [itex]\langle[/itex]x2[itex]\rangle[/itex]-2[itex]\langle[/itex]x[itex]\rangle[/itex]2+[itex]\langle[/itex]x[itex]\rangle[/itex]2
= [itex]\langle[/itex]x2[itex]\rangle[/itex]-[itex]\langle[/itex]x[itex]\rangle[/itex]2
Where did I mess up?
Last edited: