- #1
phoenix95
Gold Member
- 81
- 22
Following from Wikipedia, the covariant formulation of electromagnetic field involves postulating an electromagnetic field tensor(Faraday 2-form) F such that
F=dA
where A is a 1-form, which makes F an exact differential form. However, is there any specific reason for expecting F to be exact? Could it be the case that in general, F is a closed differential form, but by virtue of the Poincare lemma we define F to be this way?
F=dA
where A is a 1-form, which makes F an exact differential form. However, is there any specific reason for expecting F to be exact? Could it be the case that in general, F is a closed differential form, but by virtue of the Poincare lemma we define F to be this way?