A Why electromagnetic tensor (Faraday 2-form) is exact? (and not closed)

AI Thread Summary
The discussion centers on the nature of the electromagnetic field tensor (Faraday 2-form) F, questioning why it is considered exact (F=dA) rather than merely closed. It acknowledges that while all exact forms are closed, not all closed forms are exact, raising the issue of the conditions under which F is defined as exact. The Poincaré lemma indicates that F can be expressed as the differential of a 1-form A locally, but this does not guarantee global exactness. The example of a potential vortex illustrates a scenario where F is closed globally but not exact due to the topology of the space involved. This highlights the complexities in the relationship between closed and exact forms in electromagnetic theory.
phoenix95
Gold Member
Messages
81
Reaction score
23
Following from Wikipedia, the covariant formulation of electromagnetic field involves postulating an electromagnetic field tensor(Faraday 2-form) F such that
F=dA
where A is a 1-form, which makes F an exact differential form. However, is there any specific reason for expecting F to be exact? Could it be the case that in general, F is a closed differential form, but by virtue of the Poincare lemma we define F to be this way?
 
Physics news on Phys.org
That's just the homogeneous Maxwell equations, ##\mathrm{d} F=0##. In Ricci-calculus notation that's
$$\partial_{\mu} ^{\dagger} F^{\mu \nu}=\partial_{\mu} \frac{1}{2} \epsilon^{\mu \nu \rho \sigma} F_{\rho \sigma}=0.$$
The Poincare lemma tells you that (at least locally) ##F=\mathrm{d} A## or, in Ricci notation,
$$F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}.$$
 
vanhees71 said:
That's just the homogeneous Maxwell equations, ##\mathrm{d} F=0##. In Ricci-calculus notation that's
$$\partial_{\mu} ^{\dagger} F^{\mu \nu}=\partial_{\mu} \frac{1}{2} \epsilon^{\mu \nu \rho \sigma} F_{\rho \sigma}=0.$$
The Poincare lemma tells you that (at least locally) ##F=\mathrm{d} A## or, in Ricci notation,
$$F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}.$$
Thanks for the reply. I understood that. But as much as I know, not all closed forms are exact (although all exact forms are closed). So is there a specific reason why we always write F=dA? In other words, just because it is closed why do we expect it to be exact?

In your answer, you wrote F=dA at least locally right? So am I right in saying that the differential 2-form F, in general, is not exact globally (although we both agree that F has to be closed globally)?
 
Well, there are examples like the "potential vortex", where you have a multiply connected region, where you have ##\text{curl} \vec{B}=0## everywhere except along an arbitrary infinite line (e.g., along the ##3##-axis of a Cartesian coordinate system) and
$$\vec{B}=\frac{C}{x^2+y^2} \begin{pmatrix}-y \\x \\ 0 \end{pmatrix},$$
which has
$$\int_{K} \mathrm{d} \vec{r} \vec{B}=2 \pi C N$$
for any closed curve ##K##, which winds ##N## times around the ##z##-axis.
 
I was using the Smith chart to determine the input impedance of a transmission line that has a reflection from the load. One can do this if one knows the characteristic impedance Zo, the degree of mismatch of the load ZL and the length of the transmission line in wavelengths. However, my question is: Consider the input impedance of a wave which appears back at the source after reflection from the load and has traveled for some fraction of a wavelength. The impedance of this wave as it...
Back
Top