Why iπ in Contour Integration for Improper Integral Involving ln?

In summary, the integral $\int_0^\infty \frac{\ln(x)}{1+x^2} dx$ can be evaluated using contour integration techniques, specifically by integrating it along a keyhole contour. This approach involves computing the residues and evaluating the integral along different paths. Alternatively, the integral can also be evaluated using the Inverse Tangent Integral function.
  • #1
jacobi1
48
0
How would I evaluate \(\displaystyle \int_0^\infty \frac{\ln(x)}{1+x^2} dx\)?
 
Physics news on Phys.org
  • #2
jacobi said:
How would I evaluate \(\displaystyle \int_0^\infty \frac{\ln(x)}{1+x^2} dx\)?
If you know about contour integration, integrate it round a keyhole contour.
 
  • #3
jacobi said:
How would I evaluate \(\displaystyle \int_0^\infty \frac{\ln(x)}{1+x^2} dx\)?

\(\displaystyle \int_0^\infty \frac{\ln(x)}{1+x^2} dx = -\int_0^\infty \frac{\ln(x)}{1+x^2} dx\)

Actually this can be generalized to

\(\displaystyle \int_0^\infty \frac{\ln(x)^{2n+1}}{1+x^2} dx =0 \)

On the other hand

\(\displaystyle \int_0^\infty \frac{\ln(x)^{2n}}{1+x^2} dx\)

Can be solved using complex analysis approaches .
 
  • #4
Could I use differentiation under the integral sign or any elementary integration techniques to do it? I don't know complex analysis :(
 
  • #5
jacobi said:
Could I use differentiation under the integral sign or any elementary integration techniques to do it? I don't know complex analysis :(

There is no need to use complex analysis .The integral is equal to $0$ as I pointed to prove that make the substitution $x = \frac{1}{t}$ which reslults in $I = -I $ only possibly if $I=0$.
 
  • #6
Oh, I see. Thanks! :D
 
  • #7
jacobi said:
How would I evaluate \(\displaystyle \int_0^\infty \frac{\ln(x)}{1+x^2} dx\)?

Integrals of this type are solved in elementary way with the procedure described in... http://mathhelpboards.com/math-notes-49/integrals-natural-logarithm-5286.html

This integral however is 'even more elementary' because splitting the integral in two parts and with the substitution $x= \frac{1}{t}$ in the second part You obtain...

$\displaystyle \int_{0}^{\infty} \frac{\ln x}{1 + x^{2}}\ dx = \int_{0}^{1} \frac{\ln x}{1 + x^{2}}\ dx + \int_{1}^{\infty} \frac{\ln x}{1 + x^{2}}\ dx = \int_{0}^{1} \frac{\ln x}{1 + x^{2}}\ dx - \int_{0}^{1} \frac{\ln t}{1 + t^{2}}\ dt =0\ (1)$

Kind regards

$\chi$ $\sigma$
 
  • #8
Opalg said:
If you know about contour integration, integrate it round a keyhole contour.

The exact value of the integral, obtained in absolutely elementary way, is zero and that allows us to do an interesting analysis about the keyhole contour integration when a logarithm is in the function to be integrated. Before doing that it is necessary to answer to the following question: what is the principal value of $\displaystyle \ln (e^{i\ \theta})$ for $0 \le \theta < 2 \pi$?... Most of the 'Holybooks' report the discontinous function that also 'Monster Wolfram' reports...

ln (e^(i x)) x from 0 to 2 pi - Wolfram|Alpha+

In my opinion such a definition is questionable because if we intend to integrate the function $\displaystyle f(z)= \frac{\ln z}{1+z^{2}}$ along the path illustrated in the figure... http://d4ionjxa82at6.cloudfront.net/a8/bb/i75414440._szw380h285_.jpg

... we find that that's impossible because the discontinuity of the term $\ln z$ when the negative x-axis is crossed. If we adopt the 'more logical' definition...

$\displaystyle \ln (e^{i\ \theta}) = i\ \theta,\ 0 \le \theta < 2\ \pi\ (1)$

... we find that f(z) has two poles in z=i and z=-i and one 'brantch point' in z=0, so that keyhole integration alonf the path of the figure can be performed. First step is to compute the residues...

$\displaystyle r_{1}= \lim_{z \rightarrow i} f(z)\ (z-i) = \frac{\pi}{4}$

$\displaystyle r_{2}= \lim_{z \rightarrow - i} f(z)\ (z+i) = - \frac{3\ \pi}{4}\ (2)$

... so that the integral along the path of the figure is...

$\displaystyle \int_{A B C D} f(z)\ dz = i\ \int_{0}^{2\ \pi} \frac{R\ (\ln R + i\ \theta)}{1 + R^{2}\ e^{2\ i\ \theta}}\ e^{i\ \theta}\ d \theta + \int_{R}^{r} \frac{\ln x}{1+x^{2}}\ dx + 2\ \pi\ i\ \int_{R}^{r} \frac{d x}{1+x^{2}} +$

$\displaystyle +i\ \int_{2\ \pi}^{0} \frac{r\ (\ln r + i\ \theta)}{1 + r^{2}\ e^{2\ i\ \theta}}\ e^{i\ \theta}\ d \theta + \int_{r}^{R} \frac{\ln x}{1 + x^{2}}\ d x = 2\ \pi\ i\ (r_{1} + r_{2})= - i\ \pi^{2}\ (3)$

Now if we push r to 0 and R to infinity we find that the first and fourth term vanishes and (3) is reduced to the trivial identity $- i\ \pi^{2} = -i\ \pi^{2}$ that doesn't give any information about the value of the integral $\displaystyle \int_{0}^{\infty} \frac{\ln x}{1 + x^{2}}\ dx$. May be that some different way has to be found...

Kind regards

$\chi$ $\sigma$
 
  • #9
Here's an alternative evaluation for

\(\displaystyle \int_z^{\infty}\frac{\log x}{(1+x^2)}\,dx\)

For the sake of simplicity, I'll assume z > 1 here, although it's not particularly complicated if z <1. Make the reciprocal substitution \(\displaystyle x \to 1/y\,\) to obtain :

\(\displaystyle \int_z^{\infty}\frac{\log x}{(1+x^2)}\,dx=\int_0^{1/z}\frac{\log(1/y)}{1+(1/y)^2}\frac{dy}{y^2}=\)

\(\displaystyle -\int_0^{1/z}\frac{\log x}{(1+x^2)}\,dx=\log z\tan^{-1}(1/z)+\int_0^{1/z}\frac{\tan^{-1}x}{x}\,dx\)That last integral is the Inverse Tangent Integral, a transcendental function in it's own right defined by:

\(\displaystyle \text{Ti}_2(z)=\int_0^z\frac{\tan ^{-1}t}{t}\,dt\)So in short, for z > 1, your answer is:

\(\displaystyle \int_z^{\infty}\frac{\log x}{(1+x^2)}\,dx=\log z\tan^{-1}(1/z)+\text{Ti}_2(1/z)\)Incidentally, by noting that

\(\displaystyle \tan^{-1}x+\cot^{-1}x=\tan^{-1}x+\tan^{-1}(1/x)=\frac{\pi}{2}\)

it is easy enough to deduce the inversion relation for the Inverse Tangent Integral:

\(\displaystyle \text{Ti}_2(z)+\text{Ti}_2(1/z)=\int_0^z\frac{\tan ^{-1}t}{t}\,dt+\int_0^z\frac{\tan ^{-1}(1/t)}{t}\,dt=\)

\(\displaystyle \frac{\pi}{2}\int_0^z\frac{dt}{t}=\frac{\pi}{2} \log z\)So the final evaluation of your integral could just as easily be re-written as:\(\displaystyle \int_z^{\infty}\frac{\log x}{(1+x^2)}\,dx=\log z\cot^{-1}z+\frac{\pi}{2} \log z-\text{Ti}_2(z)\)I hope that helps! :D

Gethin
 
  • #10
Furthermore, note that

\(\displaystyle \int_0^{\infty}\frac{\log x}{(1+x^2)}\,dx=\int_0^{\pi/2}\log(\tan x)\,dx=\)

\(\displaystyle \int_0^{\pi/2}\log(\sin x)\,dx-\int_0^{\pi/2}\log(\cos x)\,dx= 0\)

Since

\(\displaystyle \int_0^{\pi/2}\log(\sin x)\,dx=\int_0^{\pi/2}\log(\cos x)\,dx=-\frac{\pi}{2}\log 2\)
Follow the link for a bit more about the Inverse tangent integral... Inverse tangent integral : Special Functions
 
  • #11
ZaidAlyafey said:
\(\displaystyle \int_0^\infty \frac{\ln(x)}{1+x^2} dx = -\int_0^\infty \frac{\ln(x)}{1+x^2} dx\)

Actually this can be generalized to

\(\displaystyle \int_0^\infty \frac{\ln(x)^{2n+1}}{1+x^2} dx =0 \)

On the other hand

\(\displaystyle \int_0^\infty \frac{\ln(x)^{2n}}{1+x^2} dx\)

Can be solved using complex analysis approaches .
Hello Z! (Sun)Your results above have a very simple explanation... ( I know you know this, I just thought it worth adding to this 'ere thread ;) )

Let

\(\displaystyle \mathcal{T}_m(\theta)=\int_0^{\theta}\log^m(\tan x)\,dx\)

Substituting \(\displaystyle y=\tan x\,\) in \(\displaystyle \mathcal{T}_m(\theta)\,\) and setting \(\displaystyle \theta=\pi/4\,\) yields

\(\displaystyle \mathcal{T}_m(\pi/4)=\int_0^{\pi/4}\log^m(\tan x)\,dx=\int_0^1\frac{(\log x)^m}{(1+x^2)}\,dx\)

Now expand the denominator \(\displaystyle (1+x^2)^{-1}\,\) into the infinite series

\(\displaystyle \frac{1}{(1+x^2)}=\sum_{k=0}^{\infty}(-1)^kx^{2k}\)

and insert that into the integral:

\(\displaystyle \int_0^1\frac{(\log x)^m}{(1+x^2)}\,dx=\sum_{k=0}^{\infty}\int_0^1x^{2k}(\log x)^m\,dx\)But...

\(\displaystyle \int_0^1x^n(\log x)^m\,dx = \frac{(-1)^mm!}{(n+1)^{m+1}}\)

Hence

\(\displaystyle \int_0^1\frac{(\log x)^m}{(1+x^2)}\,dx=(-1)^mm!\,\sum_{k=0}^{\infty}\frac{(-1)k}{(2k+1)^{m+1}}\)

This is none other than the Dirichlet Beta function, defined by:

\(\displaystyle \beta(x)=\sum_{k=0}^{\infty}\frac{(-1)^k}{(2k+1)^x}\)

Which, amongst others, has the special value \(\displaystyle \beta(2) = G\,\) (Catalan's contsant).

So

\(\displaystyle \int_0^{\pi/4}\log^m(\tan x)\,dx=(-1)^mm!\,\beta(m+1)\)Finally, observe that

\(\displaystyle \int_0^{\pi/4}\log^m(\tan x)\,dx+\int_{\pi/4}^{\pi/2}\log^m(\tan x)\,dx=\int_0^{\pi/2}\log^m(\tan x)\,dx\)

Substitute \(\displaystyle x=\pi/2-y\,\) in the second integral to get

\(\displaystyle \int_0^{\pi/4}\log^m(\tan x)\,dx-\int_{\pi/4}^0\log^m(\cot x)\,dx=\)

\(\displaystyle \int_0^{\pi/4}\log^m(\tan x)\,dx+(-1)^m\int_0^{\pi/4}\log^m(\tan x)\,dx=\)

\(\displaystyle [1+(-1)^m]m!\,\beta(m+1)\)

Hence\(\displaystyle \int_0^{\pi/2}\log^{2m}(\tan x)\,dx=2\, m!\,\beta(2m+1)\)

and

\(\displaystyle \int_0^{\pi/2}\log^{2m+1}(\tan x)\,dx=0\)
 
  • #12
jacobi said:
How would I evaluate \(\displaystyle \int_0^\infty \frac{\ln(x)}{1+x^2} dx\)?

First change the variable. Substitute for x such x = exp(t). Then the derivative of x is exp(t) dt.

The limits of the new integral are the same.

Next, turn to the contour. Instead of a circle or semi-circle, use a rectangle. The lower bound is the real axis, from -R to R; the upper bound is parallel and above the real axis at -R + i\pi to R + i\pi. The left boundary goes from the real axis at -R to the line parallel axis from -R + i\pi to R + i\pi. A similar situation exists for the right boundary.

Why i\pi?
 

FAQ: Why iπ in Contour Integration for Improper Integral Involving ln?

What is an improper integral involving ln?

An improper integral involving ln is an integral with logarithmic terms in the integrand that does not have a finite value when evaluated at the limits of integration. This means that the function being integrated approaches infinity or negative infinity at one or both of the limits.

How do you determine if an integral involving ln is improper?

An integral involving ln is improper if the limits of integration are either infinite or if the integrand has a singularity at one or both of the limits.

How do you evaluate an improper integral involving ln?

To evaluate an improper integral involving ln, you can use techniques such as substitution, integration by parts, or partial fractions. You may also need to use properties of logarithms and limits to simplify the integral before integrating.

What are some common examples of improper integrals involving ln?

Some common examples of improper integrals involving ln include integrals with logarithmic functions in the integrand, such as and .

What are some applications of improper integrals involving ln?

Improper integrals involving ln can be used to solve various problems in physics, engineering, and other sciences. They are particularly useful in situations where the function being integrated approaches infinity or negative infinity, such as in calculating areas under curves with vertical asymptotes or in finding volumes of solids with unbounded cross-sectional areas.

Back
Top