Why is a module with a diagonal operator and distinct diagonal entries cyclic?

  • MHB
  • Thread starter Chris L T521
  • Start date
In summary, a diagonal operator is important for simplifying operations and understanding the structure and properties of a module. Distinct diagonal entries mean that each entry is unique, allowing for a more complex structure. A cyclic module can be generated by a single element and has important implications in group theory. The diagonal operator plays a crucial role in determining the cyclic properties of a module and can enhance its complexity. Even without a diagonal operator, a module can still be cyclic, but it may be more challenging to analyze and understand its cyclic nature.
  • #1
Chris L T521
Gold Member
MHB
915
0
Here's this week's problem.

-----

Problem: Let $V$ be a finite-dimensional $K[X]$-module, and let $\phi$ be the associated operator on $V$. Suppose that $\Delta$ represents $\phi$ with respect to some basis. Prove that if $\Delta$ is a diagonal matrix (no nonzero entries off the diagonal), and the diagonal entries of $\Delta$ are pairwise distinct, then $V$ is a cyclic $K[X]$-module.

-----

 
Physics news on Phys.org
  • #2
No one answered this week's question. You can find my solution below.

Suppose \begin{equation*}
\Delta =
\left(
\begin{array}{cccc}
\lambda_1 & 0 & \cdots & 0 \\
0 & \lambda_2& \cdots & 0 \\
\vdots& \vdots & \ddots & \vdots\\
0 & 0& \cdots &\lambda_n \\
\end{array}
\right)
\end{equation*}
where $\lambda_i \neq \lambda_j$, for $i \neq j;\ i,j = 1,2,\cdots, n$. Then for $k=1,2,\cdots,n-1$,
\begin{equation*}
\Delta^k = \left(
\begin{array}{cccc}
\lambda^k_1 & 0 & \cdots & 0 \\
0 & \lambda^k_2& \cdots & 0 \\
\vdots& \vdots & \ddots & \vdots\\
0 & 0& \cdots &\lambda^k_n \\
\end{array}
\right)
\end{equation*}

Let $v = (1,1,\cdots,1)^T \in V$, then for $k=1,2,\cdots,n-1$,
$$\phi^k(v) = \Delta^k v = (\lambda^k_1, \lambda^k_2, \cdots, \lambda^k_n)^T.$$

Now we prove that $\{v,\phi(v),\phi^2(v), \cdots, \phi^{n-1}(v)\}$ are linearly independent. Suppose for $k_1,k_2,\cdots,k_n \in K$,
$$k_1 v + k_2\phi(v) + k_3\phi^2(v) + \cdots + k_n\phi^{n-1}(v) = 0.$$

i.e.

\begin{equation*} k_1
\left(
\begin{array}{c}
1 \\
1\\
\vdots \\
1\\
\end{array}
\right)
+k_2 \left(
\begin{array}{c}
\lambda_1 \\
\lambda_2\\
\vdots \\
\lambda_n\\
\end{array}
\right) +\cdots+ k_n \left(
\begin{array}{c}
\lambda^{n-1}_1 \\
\lambda^{n-1}_2\\
\vdots \\
\lambda^{n-1}_n\\
\end{array}
\right) = 0.
\end{equation*}

That is
\begin{equation*}
\left(
\begin{array}{cccc}
1 & \lambda_1 & \cdots & \lambda^{n-1}_1 \\
1 & \lambda_2& \cdots & \lambda^{n-1}_2 \\
\vdots& \vdots & \ddots & \vdots\\
1 & \lambda_n& \cdots &\lambda^{n-1}_n \\
\end{array}
\right)
\left(
\begin{array}{c}
k_1 \\
k_2\\
\vdots \\
k_n\\
\end{array}
\right) = 0.
\end{equation*}

The matrix is a Vandermonde Matrix above, therefore
\begin{equation*}
\det
\left(
\begin{array}{cccc}
1 & \lambda_1 & \cdots & \lambda^{n-1}_1 \\
1 & \lambda_2& \cdots & \lambda^{n-1}_2 \\
\vdots& \vdots & \ddots & \vdots\\
1 & \lambda_n& \cdots &\lambda^{n-1}_n \\
\end{array}
\right) = \prod_{1\leqslant i < j \leqslant n} (\lambda_i - \lambda_j).
\end{equation*}

By the presumption, $\lambda_i \neq \lambda_j$, for $i \neq j$. Hence the determinant above is non-zero. Therefore the matrix is non-singular. Thus the equations admit only zero solution. i.e.
$$k_1 = k_2 = \cdots = k_n = 0.$$
Hence $\{v,\phi(v),\phi^2(v), \cdots, \phi^{n-1}(v)\}$ are linearly independent, and it is a basis for $V$. By definition, $V$ is a cyclic $K[X]$-module.
 

FAQ: Why is a module with a diagonal operator and distinct diagonal entries cyclic?

Why is it important for a module to have a diagonal operator?

A diagonal operator allows for the simplification of operations and calculations on the module. It also helps to identify the structure and properties of the module, making it easier to analyze and understand.

What does it mean for a module to have distinct diagonal entries?

Distinct diagonal entries means that each element on the diagonal of the module's operator is unique and different from all other elements. This allows for a more diverse and complex structure within the module.

What is the significance of a module being cyclic?

A cyclic module is one that can be generated by a single element. This means that the entire module can be represented by a single element, making it simpler to understand and manipulate. It also has important implications in the study of group theory.

How does the diagonal operator affect the cyclic nature of a module?

The diagonal operator plays a crucial role in determining the cyclic properties of a module. If the diagonal operator has distinct diagonal entries, it can enhance the cyclic nature of the module and provide more complex and interesting structures.

Can a module without a diagonal operator be cyclic?

Yes, a module without a diagonal operator can still be cyclic. However, the lack of a diagonal operator may make it more difficult to analyze and understand the cyclic properties of the module. The presence of a diagonal operator can simplify the structure and make it easier to determine the cyclic nature of the module.

Back
Top