- #1
Dustinsfl
- 2,281
- 5
Why is $\alpha$ mentioned? I don't see an $\alpha$.With proper non-dimensionalization and assuming for convenience that the ratio of convection and conduction parameters $h/k = 1$, the cooling process is described by the following equations:
\begin{alignat*}{4}
T_t & = & T_{xx} & \\
T_x(0,t) & = & 0 & \\
T_x + T & = & 0 & \quad \text{at} \ x = 1\\
T(x,0) & = & f(x) &
\end{alignat*}
Here, $x$ and $t$ are dimensionless positions and times wherein the original interval has been mapped from $[0,L]$ to $[0,1]$ and a time-scale based on the diffusivity $\alpha$ has been used; also, the temperature definition is such that the ambient temperature has a reference value of zero.
\begin{alignat*}{4}
T_t & = & T_{xx} & \\
T_x(0,t) & = & 0 & \\
T_x + T & = & 0 & \quad \text{at} \ x = 1\\
T(x,0) & = & f(x) &
\end{alignat*}
Here, $x$ and $t$ are dimensionless positions and times wherein the original interval has been mapped from $[0,L]$ to $[0,1]$ and a time-scale based on the diffusivity $\alpha$ has been used; also, the temperature definition is such that the ambient temperature has a reference value of zero.