- #1
Ale_Rodo
- 32
- 6
Can we make sense out of the formula of entropy like we do for density (like "quantity of mass per unit volume")? What's the sense of Q/T? Couldn't it be something else?
Of course it probably is a 'me-problem', but I haven't studied Thermodynamics deeply yet and was wondering what Entropy actually means. It is often described as a quantity defining how much randomness that system is subject to, how probable it is for a system to evolve in a certain way and something in between these two, but how do you get from "Q/T" to randomness or probability? Is it possible to make the most general example of why Q/T makes sense?
I am looking for a demonstration of why it came to existence in that form or just an immediate logical example, such as professors usually do when explaining what density of mass is, if possible.
I think you already got what I'm trying to say at this point, but I'm going to clarify by using this very example of density: ρ = m/V indicates how much mass is there per unit volume and it's easy to imagine, in fact, we could approximately say that the more dense something is, the more atoms per unit volume we'll have.
Can we do the same thing for S = Q/T? I have some ideas of my own but they don't really have anything to do with randomness or probability and of course I'm what's farthest away from being an expert in Thermodynamics.
Thank you very much in advance.
Of course it probably is a 'me-problem', but I haven't studied Thermodynamics deeply yet and was wondering what Entropy actually means. It is often described as a quantity defining how much randomness that system is subject to, how probable it is for a system to evolve in a certain way and something in between these two, but how do you get from "Q/T" to randomness or probability? Is it possible to make the most general example of why Q/T makes sense?
I am looking for a demonstration of why it came to existence in that form or just an immediate logical example, such as professors usually do when explaining what density of mass is, if possible.
I think you already got what I'm trying to say at this point, but I'm going to clarify by using this very example of density: ρ = m/V indicates how much mass is there per unit volume and it's easy to imagine, in fact, we could approximately say that the more dense something is, the more atoms per unit volume we'll have.
Can we do the same thing for S = Q/T? I have some ideas of my own but they don't really have anything to do with randomness or probability and of course I'm what's farthest away from being an expert in Thermodynamics.
Thank you very much in advance.