- #1
BWV
- 1,524
- 1,863
Grahams Number, the largest number used in a mathematical proof (so large you can't even comprehend how $&%ing big it is), is a factor of 3 (I.e. g1= 3^^^^3 using the ^ for the Knuth up-arrow notation and grahams number = g64 where each step from g1 to 64 the number of arrows is iterated from the previous number, so g1 is incomprehensible and g2 has g1 number of ^'s and so on)
the number is the upper bound to the problem:
Connect each pair of geometric vertices of an n-dimensional hypercube to obtain a complete graph on 2n vertices. Colour each of the edges of this graph either red or blue. What is the smallest value of n for which every such colouring contains at least one single-coloured complete subgraph on four coplanar vertices?
the number is the upper bound to the problem:
Connect each pair of geometric vertices of an n-dimensional hypercube to obtain a complete graph on 2n vertices. Colour each of the edges of this graph either red or blue. What is the smallest value of n for which every such colouring contains at least one single-coloured complete subgraph on four coplanar vertices?