- #1
X89codered89X
- 154
- 2
I found a particular integral in my stat book.
[itex] \frac{d}{ d\theta}\int^{b(\theta)}_{a(\theta)}f(\theta,t)dt =
\int^{b(\theta)}_{a( \theta)}\frac{ \partial}{ \partial \theta}f( \theta ,t)dt +
f( \theta, b( \theta)) \frac {\partial b(\theta)}{ \partial \theta} -
f(\theta, a(\theta))\frac{ \partial a(\theta)}{\partial \theta} [/itex]
Why is this the case? Why is it not...
[itex] \int^{b(\theta)}_{a(\theta)}f(\theta,t)dt =
\int^{b(\theta)}_{a( \theta)}\frac{ \partial}{ \partial \theta}f( \theta ,t)dt +
\frac{d}{ d\theta} [F( \theta, b( \theta)) - F(\theta, a(\theta))]
[/itex]
EDITED: Fixing LaTeX, as per usual. Sorry Folks.
[itex] \frac{d}{ d\theta}\int^{b(\theta)}_{a(\theta)}f(\theta,t)dt =
\int^{b(\theta)}_{a( \theta)}\frac{ \partial}{ \partial \theta}f( \theta ,t)dt +
f( \theta, b( \theta)) \frac {\partial b(\theta)}{ \partial \theta} -
f(\theta, a(\theta))\frac{ \partial a(\theta)}{\partial \theta} [/itex]
Why is this the case? Why is it not...
[itex] \int^{b(\theta)}_{a(\theta)}f(\theta,t)dt =
\int^{b(\theta)}_{a( \theta)}\frac{ \partial}{ \partial \theta}f( \theta ,t)dt +
\frac{d}{ d\theta} [F( \theta, b( \theta)) - F(\theta, a(\theta))]
[/itex]
EDITED: Fixing LaTeX, as per usual. Sorry Folks.
Last edited: