- #1
al_9591
- 12
- 0
- Homework Statement
- A chain of total mass M and length l is suspended vertically with
its lowest end touching a scale. The chain is released and falls onto
the scale.
What is the reading of the scale when a length of chain, x, has
fallen? (Neglect the size of individual links.)
- Relevant Equations
- F = dp/dt
F = ma
I have seen the solution for this problem but still there are some things I do not understand and would like clarification.
In the equations below I understand that we use the chain rule on m and v but what I don't understand why m*dv/dt is 0, I don't think is because the acceleration of dm is 0, since I assume dm is free-falling then it has acceleration g.
Also, when I tried solving for the speed of a segment of chain dm using conservation of energy, I got for v = sqrt(2gx), which is correct based on the solution I saw, but could we use for the height displaced L-x, instead of x? I tried to solve it with L-x but I got the wrong solution. My assumption here was that an element dm located at a height L-x from the floor/scale starts from rest and reaches the speed below.
In the equations below I understand that we use the chain rule on m and v but what I don't understand why m*dv/dt is 0, I don't think is because the acceleration of dm is 0, since I assume dm is free-falling then it has acceleration g.
Also, when I tried solving for the speed of a segment of chain dm using conservation of energy, I got for v = sqrt(2gx), which is correct based on the solution I saw, but could we use for the height displaced L-x, instead of x? I tried to solve it with L-x but I got the wrong solution. My assumption here was that an element dm located at a height L-x from the floor/scale starts from rest and reaches the speed below.