- #1
Happiness
- 695
- 31
- TL;DR Summary
- When solving for the correction to the Hamiltonian due to strong-field Zeeman effect (using perturbation theory), why is m_j not a "good" quantum number, given that J_z is conserved too?
This textbook claims ##m_j## is not a "good" quantum number because the total angular momentum (of an electron of a hydrogen atom placed in a strong uniform magnetic field) is not conserved. I don't understand why ##m_j## is not a "good" quantum number.
Since ##J=L+S##, ##J_z=L_z+S_z##.
Since ##L_z## and ##S_z## are both conserved, so is ##J_z##.
##J_z## commutes with ##H'_Z## too.
So shouldn't ##m_j## be a "good" quantum number too?
The phrase "good quantum number" relates to the following theorem in perturbation theory:
The book is "Introduction to Quantum Mechanics", 2nd edition, by David Griffiths.
Since ##J=L+S##, ##J_z=L_z+S_z##.
Since ##L_z## and ##S_z## are both conserved, so is ##J_z##.
##J_z## commutes with ##H'_Z## too.
So shouldn't ##m_j## be a "good" quantum number too?
The phrase "good quantum number" relates to the following theorem in perturbation theory:
The book is "Introduction to Quantum Mechanics", 2nd edition, by David Griffiths.