- #36
cabraham
- 1,181
- 90
Yes it is physically correct to say that current I produces voltage V in a resistance. It is also correct that a voltage V places across resistance results in current I.LvW said:...and we can think about the meaning of the form: V=I*R.
We are using this form to find the "voltage drop" caused by a current I that goes through the resistor R.
However, is it - physically spoken - correct to say that the current I is producing a voltage V across the resistor R ?
(Because an electrical field within the resistive body is a precondition for a current I, is it not?)
Either one can give rise to the other.
No, an electric field across the resistance is not necessary for current to commence. A switch is closed, a battery has an E field due to redox chemical reaction. Charges move through the cables towards the resistor. Current is already commenced by battery redox. When the charges reach the resistance, they continue into the body but incur collusions between electrons & lattice ions. This results in e lectrons droppii g from conduction band down to valence band. Polarization occurs with photon emission. When current is in a resistance it gets warm from this energy conversion. The E field across the resistor happens when charges emitted from the battery arrive. Positive battery terminal attracts electrons from cable. An electron vacating its parent atom leaves a positive ion behind or hole if you prefer. The atom next in line emits an electron towards this hole. Reverse happens at negative battery terminal. The charges & the associated E field arrive at the resistor. Current already is established, as the charges are in motion before the resistor receives them. Charges proceed through the resistor colliding with lattice ions resulting in polarization & photon emission. Polarized charges have an E field, & the line integral of said E field over the distance is the voltage drop.
At equilibrium the equation J = sigma*E, or E = rho*J, which is Ohm's law in 3 dimensions. I will elaborate if needed.
Claude