Why Is Proton-Antiproton Annihilation to a Single Photon Forbidden?

In summary, the process of p + p_bar -> 1 photon is forbidden due to energy and momentum conservation. If the proton and antiproton have exactly opposite momenta, they could potentially create 3 photons to conserve parity. However, it is not possible for a single photon to be created if either the proton or antiproton has a higher momentum than the other. It is also possible for 2 or 3 photons to be created in the annihilation process.
  • #1
malawi_glenn
Science Advisor
Homework Helper
6,735
2,458

Homework Statement



state why p + p_bar --> 1 photon

is forbidden


Homework Equations





The Attempt at a Solution



I have checked all quantum numbers and they are okay. I wondering altough if p_bar has intrinsic parity -1 (p has parity +1)??

According to the soloution, it is forbidden because of energy and momentum conservation. I have not been giving a single word about the production conditions and so forth. HOW can this (E and p) be violated if I choose whatever annihilation condition so that p and E is not violated??!
 
Physics news on Phys.org
  • #2
Which special frame of reference is often used in collision problems?
 
  • #3
Center of mass. But that is not statet OFTEN CM frame is used. Sometimes I just want to **** my teachers.. :P
 
  • #4
Centre of momentum frame. Is there a center of momentum frame for a system consisting of of a proton and an anti-proton? Is a there center of momerntum frame for a system consisting of a single photon?

malawi_glenn said:
Sometimes I just want to **** my teachers.. :P

Good! This means that they're making you think! :biggrin:
 
  • #5
And who are saying that the proton and antiproton has EXACTLY opposite momenta?

What if for example p has little more momentum than the p_bar? Is not one-photon creation possible then?

And if two photons are created, then parity is violated? So there must be a three photon creation in order to conserve all, IF the p and p_bar is traveling at exactly the same momenta (but opposite). Is that right?
 
  • #6
I had a question similar to your one I had to solve. The question was "Show that a photon cannot spontaneously disintegrate into and electron-positron pair". The lecturer mentioned I could tackle this problem using four-momentum or classical conservation of energy and momentum.

I used the classical way, so I didn't have to deal with tensors :-p
An assumption is made at the start, that the electron-positron pair don't move at relativistic speeds. Thus, a classical "Newtonian" means can be applied to the question.

So, all I did was work out the initial/final energy and momentum of the system. Using the conservation of energy equation I substituted it into the conservation of momentum equation and solved for the velocity v (This was the velocity of the electron and positron) . I found v to equal 2c, where c is the speed of light. This implies that the electron and positron was going at twice the speed of light which cannot happen.
This implies that the photon cannot spontaneously disintegrate.

I know this wasn't the same as your question, but I think the logic is the same but reversed and you may obtain a final velocity less than c. Not too sure though.

I hope this helps.
 
  • #7
But protons are not elementary particle systems.

And if the photon has enough energy and is in the field of a nucleus, pair production is posssible.

The correct analogy would be "why can not an electron and positron annihilate and produce a single photon"
I know that two photons are produced, but that would violate parity if the electron and positron has relative angular momentum = zero. ?

I really love to think of the problems on a deeper level than just knowing the answer. I want to understad these things how they work.

If we look att this electron positron annihilation: e + posit = 2 fotons
parity_initial = (-1)(+1) (if zero angular momentum)
parity_final = (-1)(-1) i.e parity is violated??

I did the similar for the p + p_bar and either one or three photons are emitted, depending on how p and p_bar moves relative each other.

How would all the pro's out there solve this?;)
 
  • #8
Sorry mate, I don't seem to know enough about parities. I remember being it mentioned in quantum.

The question I got was from a relativistic dynamics unit.

Which topic of physics are you studying at the moment?
 
  • #9
PsiPhi said:
Sorry mate, I don't seem to know enough about parities. I remember being it mentioned in quantum.

The question I got was from a relativistic dynamics unit.

Which topic of physics are you studying at the moment?

Iam studiyn nuclear and particle physics.

I want to have all points on the exam tomorrow =( but exersices hwere no background information or descriptions of the collision and decays, I often want to give all possible solutions, because I am never sure what the teacher want me to answer...

as in this p + p_bar annihilation, why do they have to collide with exactly the same momenta (but reverse)? There is nothing in the text.. it really makes me angry :P

So my question for everyboy who know this stuff;
can the p and p_bar create a single photon if any of them has higher momentum than the other one? And if they collide with same but opposite momenta, do they create 3 photons to conserve parity?
 
  • #10
malawi_glenn said:
can the p and p_bar create a single photon if any of them has higher momentum than the other one?

No.

If the total spatial momenta of the proton anti-proton system is non-zero, then you can always transform to a frame in which the total spatial momentum is zero. The spatial momentum of a single photon is non-zero in all frames.
 
Last edited:
  • #11
If you don't like thinking about a special frame then think about a general frame and 4 vectors. Forgetting factors of 'c', we have E^2-p^2=m^2. So in these units the spatial momentum of a proton is always less in magnitude than its energy. Now ask yourself whether two such vectors can add together to yield a vector like the photon with E=p. Clearly not, it seems to me anyway.
 
  • #12
okey, than I am fine =) Thanks!

We have not talked about this during the lecutres or lessons. And nothing in the book either..

So how would then the p + p_bar annihilate? 2 or 3 photons?
 
  • #13
Either should be kinematically possible, though I'm really not sure. I think in general real world ppbar annihilation is pretty messy since they are composite particles. Ask the folks at CERN or the Tevatron.
 
  • #14
okey, but is 2photon creation possible due to parity?
each photon has negative parity right? And no relative angular momentum between p and p_bar should give them negative parity. 2photons would have positive. am I totaly lost now? =)
 
  • #15
malawi_glenn said:
okey, but is 2photon creation possible due to parity?
each photon has negative parity right? And no relative angular momentum between p and p_bar should give them negative parity. 2photons would have positive. am I totaly lost now? =)
You do seem lost with all those answers.
p and p_bar can annihilate to two photons.
p and pbar in the S=0, L=0 state have the same Q numbers as the pi_0.
The negative parity means that the photons will have polarization corresponding to the pseudoscalar E.B. This is how Yang suggested the measurement of the parity of the pi_0 fifty years ago.
 

FAQ: Why Is Proton-Antiproton Annihilation to a Single Photon Forbidden?

1. What is proton anti-proton annihilation?

Proton anti-proton annihilation is a process in which a proton and an antiproton collide and their mass is converted into energy. This process is governed by the principles of quantum mechanics and relativity, and it is a key area of research in particle physics.

2. How does proton anti-proton annihilation occur?

Proton anti-proton annihilation occurs when a proton and an antiproton come into close proximity and interact through the strong nuclear force. This force causes the particles to annihilate each other, releasing a large amount of energy in the form of particles and radiation.

3. What are the implications of proton anti-proton annihilation?

The energy released during proton anti-proton annihilation can be used to create new particles and study their properties. This process has been instrumental in helping scientists understand the fundamental building blocks of matter and the forces that govern them. Additionally, it has potential applications in areas such as energy production and medical imaging.

4. How is proton anti-proton annihilation studied?

Proton anti-proton annihilation is studied using particle accelerators, which accelerate the particles to high speeds before colliding them. By analyzing the particles and energy released during the annihilation, scientists can gain insight into the inner workings of matter and the laws of physics.

5. Can proton anti-proton annihilation occur naturally?

While proton anti-proton annihilation can occur in nature, it is a rare event. In the vast majority of cases, protons and antiprotons are found in stable atoms and do not come into contact with each other. It is only in extreme conditions, such as in high-energy cosmic rays or in the early universe, that natural proton anti-proton annihilation may occur.

Back
Top