Why is Schrodinger's Equation complex?

In summary, the reason Schrodinger's equation is complex is because it is necessary for the theory of quantum mechanics to agree with experiment.
  • #36
Dickfore said:
Please justify this statement.

I think I did that in post #32. If there is anything there that needs clarification, I might supplement. But I think what Delta2 brought up in post #26 is more interesting and to the topic at hand.

The phase of what?

The phase of the complex 4-potential. Going to a complex 4-vector potential we can gauge fix the phase of the vector to be real valued over all spacetime. This is a global gauge fixing. Then the complex equations reduce to Maxwell's equations and magnetic charge is fixed to zero, everywhere (and everywhen).

I believe a global phase factor is an unmeasurable quantity. A = A' <-- A ephi
 
Last edited:
Physics news on Phys.org
  • #37
Phrak said:
Again, with the wild cards. Why don't you tell why you think the Lorentz gauge is relevant. Recall that the expressions I gave above are differential not integral.

Lorentz gauge is not necessarily relevant in general. But here we are discussing Maxwell equations in the context of wave equations. Wave equations, similar to Schrodinger's equation, usually describe quantum mechanics of elementary particles. Photon supposedly is a spin 1 particle. Without Lorentz gauge we also have longitudinal spin zero states.
 
  • #38
Phrak said:
I think I did that in post #32. If there is anything there that needs clarification, I might supplement. But I think what Delta2 brought up in post #26 is more interesting and to the topic at hand.

Phrak said:
For all this to hang together a subtle ontological distinction is made. It is tacitly assumed that no equivalence relationship is implied between distinct physical elements such as J==d*dA, but that current and charge density are simply aspects of the vector potential.

I'm afraid you had mistaken the cause and effect. J IS the source for d*dA, not the other way around. All currents are produced by moving charged particles in a unique manner. Consequently, external fields act on these particles with a Lorentz force. Your model fails when you try to write an equation of motion for a charged particle in an external field.

Phrak said:
The phase of the complex 4-potential. Going to a complex 4-vector potential we can gauge fix the phase of the vector to be real valued over all spacetime. This is a global gauge fixing. Then the complex equations reduce to Maxwell's equations and magnetic charge is fixed to zero, everywhere (and everywhen).

I believe a global phase factor is an unmeasurable quantity. A = A' <-- A ephi

If you had looked at the equations more carefully, you would have noticed that the sourceless equations (Gauss' Law and Faraday's Law) now have a non-zero right hand side (due to monopoles). This is why the concept of electrodynamic potentials in the usual sense of the word does not have a straightforward generalization.
 
  • #39
Dickfore said:
I'm afraid you had mistaken the cause and effect. J IS the source for d*dA, not the other way around. All currents are produced by moving charged particles in a unique manner. Consequently, external fields act on these particles with a Lorentz force. Your model fails when you try to write an equation of motion for a charged particle in an external field.

It is convenient to begin with a distribution of charge and work out the fields. This convenience does not imply a physically measurable cause and effect such as "charge causes electromagnetic fields," or that "the electromagnetic fields cause the vector potential." I'm open to proof or motivation to this conjecture.

If you had looked at the equations more carefully, you would have noticed that the sourceless equations (Gauss' Law and Faraday's Law) now have a non-zero right hand side (due to monopoles). This is why the concept of electrodynamic potentials in the usual sense of the word does not have a straightforward generalization.

No, a complex vector potential admits magnetic monopoles.
 
  • #40
Phrak said:
It is convenient to begin with a distribution of charge and work out the fields. This convenience does not imply a physically measurable cause and effect such as "charge causes electromagnetic fields," or that "the electromagnetic fields cause the vector potential." I'm open to proof or motivation to this conjecture.
But, it's not the question whether electromagnetic fields cause a vector potential, but whether electromagnetic fields cause charges and currents. If you don't think this stance is absurd, I don't have what to say anymore.

Phrak said:
No, a complex vector potential admits magnetic monopoles.
Please show your work.
 

Similar threads

Replies
5
Views
1K
Replies
11
Views
1K
Replies
16
Views
2K
Replies
143
Views
8K
Replies
15
Views
2K
Replies
11
Views
1K
Back
Top