- #1
myoho.renge.kyo
- 37
- 0
"on the relativity of times"
tB - tA = rAB / (c - v) and t'A - tB = rAB / (c + v)
"The Principle of Relativity", p 42, by A. Einstein.
consequently,
c = [rAB / (tB - tA)] + v and c = [rAB / (t'A - tB) - v
let rAB = x' and (tB - tA) = t' so that
c = (x' / t') + v
since x' = x - v*t
c = [(x - v*t) / t'] + v so that
x = t'*(c - v) + v*t
and let rAB = x and (t'A - tB) = t so that
c = (x / t) - v so that
x = t*(c + v)
consequently,
t'*(c - v) + v*t = t*(c + v)
t'*(c - v) = t*(c + v) - v*t
t'*(c - v) = t*c
t' = t*c / (c - v)
t' = t / (1 - v / c)
t' is not t / sqrt(1 - v^2 / c^2). why? thanks! (6:00 pm thru 7:00 pm, 9/21/2006)
tB - tA = rAB / (c - v) and t'A - tB = rAB / (c + v)
"The Principle of Relativity", p 42, by A. Einstein.
consequently,
c = [rAB / (tB - tA)] + v and c = [rAB / (t'A - tB) - v
let rAB = x' and (tB - tA) = t' so that
c = (x' / t') + v
since x' = x - v*t
c = [(x - v*t) / t'] + v so that
x = t'*(c - v) + v*t
and let rAB = x and (t'A - tB) = t so that
c = (x / t) - v so that
x = t*(c + v)
consequently,
t'*(c - v) + v*t = t*(c + v)
t'*(c - v) = t*(c + v) - v*t
t'*(c - v) = t*c
t' = t*c / (c - v)
t' = t / (1 - v / c)
t' is not t / sqrt(1 - v^2 / c^2). why? thanks! (6:00 pm thru 7:00 pm, 9/21/2006)
Last edited: