Why is ##\text{flux} = \pi\text{intensity}##

  • Thread starter Thread starter yucheng
  • Start date Start date
AI Thread Summary
The discussion centers on the derivation of the equation for flux, ##F = \pi B##, from a sphere of uniform brightness. Concerns are raised about the validity of the approximation used when ##r = R##, with some participants clarifying the geometric relationships involved. There is debate over the physical interpretation of the equation, particularly why it results in ##\pi B## instead of ##2\pi B##, given that the sphere occupies half of the visible solid angle from point P. The conversation highlights the complexity of isotropic radiation and the dependence of emitted intensity on the angle relative to the surface. Ultimately, the participants converge on understanding the derivation and its implications for flux calculations.
yucheng
Messages
232
Reaction score
57
Homework Statement
N/A
Relevant Equations
N/A
1632904653656.png

Textbook Derivation
Flux at an arbitrary distance from a sphere of uniform brightness ##B## (that is, all rays leaving the sphere have the same brightness). Such a sphere is clearly an isotropic source. At ##P##, the specific intensity is ##B## if the ray intersects the sphere and zero otherwise (see Fig. 1.6). Then,
$$
F=\int I \cos \theta d \Omega=B \int_{0}^{2 \pi} d \phi \int_{0}^{\theta_{c}} \sin \theta \cos \theta d \theta
$$
where ##\theta_{c}=\sin ^{-1} R / r## is the angle at which a ray from ##P## is tangent to the sphere. It follows that
$$
F=\pi B\left(1-\cos ^{2} \theta_{c}\right)=\pi B \sin ^{2} \theta_{c}
$$
or
$$
F=\pi B\left(\frac{R}{r}\right)^{2}
$$

Setting ##r=R:##
$$
F=\pi B
$$
That is, the flux at a surface of uniform brightness ##B## is simply ##\pi B##.

My worries
1. How is the equation valid when ##r=R##? The author made an approximation that ##\theta_{c}=\sin ^{-1} R / r##, and r is not the hypotenuse of the triangle, hence the approximation is only valid when ##r >> R## or ##\text{leg} \approx hypotenuse##. Rather, r is a leg. In this case, doesn't the approximation fail and vitiate the result that ##F=\pi B##?

2. Actually, which case does ##r=R## refer to? Diagram 2 or 3 below?

SmartSelect_20210929-175549_Samsung Notes.jpg

3. Is there a physical interpretation/explanation for ##F=\pi B##? The way I would think of it is that ##\pi## represents the patch of the sphere where the point resides (it is 1/4 of the whole sphere) and that this whole patch contributes to the flux at that point.
SmartSelect_20210929-175558_Samsung Notes.jpg
 
Last edited:
Physics news on Phys.org
yucheng said:
r is not the hypothenuse of the triangle
Looks like the hypotenuse to me.
You must have the wrong triangle.
The R is from the sphere's centre to where the tangent from P touches the sphere. It makes a right angle to that tangent, not to r.
 
haruspex said:
Looks like the hypotenuse to me.
You must have the wrong triangle.
The R is from the sphere's centre to where the tangent from P touches the sphere. It makes a right angle to that tangent, not to r.
Oops, wrong triangle indeed. So when ##r \to R##? So it does become like figure 3 (In the second thumbnail), albeit a different orientation. Ah I see it. Thanks! But the interpretation of ##F = \pi B##?
 
yucheng said:
But the interpretation of ##F = \pi B##?
I'm not sure why it doesn't turn out to be ##F = 2\pi B##. On reaching the sphere, the sphere occupies one half of what can be seen from P, so that should be a solid angle of ##2\pi##.
Need to think about it some more.
 
haruspex said:
I'm not sure why it doesn't turn out to be ##F = 2\pi B##. On reaching the sphere, the sphere occupies one half of what can be seen from P, so that should be a solid angle of ##2\pi##.
Need to think about it some more.
Let ##B_v## be the intensity (##\text{flux} \; \text{rad}^{-1} Hz^{-1}##)

However, the amount of radiation emitted is not isotropic. It depends on the angle from the normal of the surface (or projected surface).

$$F_v = \int B_v \cos{\theta} \, d\Omega =\int^{2\pi}_{0} \int^{ \pi}_{0} B_v \cos {\theta} \sin{\theta} \, d\theta \, d\phi = \pi B_v $$

I guess this makes sense, that F is not ##4\pi B##, nor is it ##2\pi B##
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top