- #1
eoghan
- 210
- 7
Hi there! I'm solving the dirac equation to get the fine structure hamiltonian of the hydrogen atom. In the hamiltonian there is this term:
[tex]\frac{\hbar ^2 e}{4m^2c^2}\frac{dV}{dr}\frac{\partial}{\partial r}[/tex]
This term gives rise to some difficulty because it is not hermitian. So Darwin proposed to use instead the symmetrical combination:
[tex]\frac{1}{2}\left[\left(\frac{\hbar ^2 e}{4m^2c^2}\frac{dV}{dr}\frac{\partial}{\partial r}\right)+[\left(\frac{\hbar ^2 e}{4m^2c^2}\frac{dV}{dr}\frac{\partial}{\partial r}\right)^*\right]=\frac{\hbar^2}{8m^2c^2}\nabla^2V[/tex]
but the adjoint of [tex]\frac{\hbar ^2 e}{4m^2c^2}\frac{dV}{dr}\frac{\partial}{\partial r}[/tex] is the adjoint of the spatial derivative which is anti-hermitian, so the symmetric combination should be 0... where am I wrong??
[tex]\frac{\hbar ^2 e}{4m^2c^2}\frac{dV}{dr}\frac{\partial}{\partial r}[/tex]
This term gives rise to some difficulty because it is not hermitian. So Darwin proposed to use instead the symmetrical combination:
[tex]\frac{1}{2}\left[\left(\frac{\hbar ^2 e}{4m^2c^2}\frac{dV}{dr}\frac{\partial}{\partial r}\right)+[\left(\frac{\hbar ^2 e}{4m^2c^2}\frac{dV}{dr}\frac{\partial}{\partial r}\right)^*\right]=\frac{\hbar^2}{8m^2c^2}\nabla^2V[/tex]
but the adjoint of [tex]\frac{\hbar ^2 e}{4m^2c^2}\frac{dV}{dr}\frac{\partial}{\partial r}[/tex] is the adjoint of the spatial derivative which is anti-hermitian, so the symmetric combination should be 0... where am I wrong??