- #1
ognik
- 643
- 2
Hi - this follows on from my earlier post - http://mathhelpboards.com/linear-abstract-algebra-14/all-basis-go-standard-basis-16232.html. Just like to confirm my understanding so far ...
Theorem
Given two vector spaces $ V,W $, a basis $ {α_1 ,…,α_n } $ of V and a set of n vectors $ {β_1 ,…,β_ n}⊂W $ , then there exists a unique linear transformation $T:V⟶W $ such that $ T(α_i )=β_i $.
Let $ C_v $ be the change of basis matrix w.r.t. $V$ and $C_w$ w.r.t.. $W$
1) Please confirm that the 2 change of basis matrices are both w.r.t. the standard basis?
2) So, given a vector $ \vec{a}$ in $ R^n$, we would have (I believe?) $ \vec{a} =C_w \left[ \vec{a} \right]_w $ and $ \vec{a} =C_v \left[ \vec{a} \right]_v $ ?
3) And so $ \left[ \vec{a}_w \right] = C^{-1}_w C_v \left[ \vec{a}_v \right] $?
4) I have seen a method for finding $ C^{-1}_w C_v $ (transform $ \vec{a} $ from basis V to W), - augment $ C_w $ with $ C_v $, then row reduce the LHS to the identity matrix, the RHS is then $ C^{-1}_w C_v $ ?
5) Another question, Given a transformation matrix A, if D is the equivalent transformation w.r.t. a basis B, ie. $ T(\vec{x}) = A\vec{x}, D=C^{-1}_B AC_B $, should we write $[T(\vec{x})]_B =D[(\vec{x})]_B ,\: or \: T[(\vec{x})]_B $ ?
Also, anything I am missing? Much appreciated as usual.
Theorem
Given two vector spaces $ V,W $, a basis $ {α_1 ,…,α_n } $ of V and a set of n vectors $ {β_1 ,…,β_ n}⊂W $ , then there exists a unique linear transformation $T:V⟶W $ such that $ T(α_i )=β_i $.
Let $ C_v $ be the change of basis matrix w.r.t. $V$ and $C_w$ w.r.t.. $W$
1) Please confirm that the 2 change of basis matrices are both w.r.t. the standard basis?
2) So, given a vector $ \vec{a}$ in $ R^n$, we would have (I believe?) $ \vec{a} =C_w \left[ \vec{a} \right]_w $ and $ \vec{a} =C_v \left[ \vec{a} \right]_v $ ?
3) And so $ \left[ \vec{a}_w \right] = C^{-1}_w C_v \left[ \vec{a}_v \right] $?
4) I have seen a method for finding $ C^{-1}_w C_v $ (transform $ \vec{a} $ from basis V to W), - augment $ C_w $ with $ C_v $, then row reduce the LHS to the identity matrix, the RHS is then $ C^{-1}_w C_v $ ?
5) Another question, Given a transformation matrix A, if D is the equivalent transformation w.r.t. a basis B, ie. $ T(\vec{x}) = A\vec{x}, D=C^{-1}_B AC_B $, should we write $[T(\vec{x})]_B =D[(\vec{x})]_B ,\: or \: T[(\vec{x})]_B $ ?
Also, anything I am missing? Much appreciated as usual.
Last edited: