- #1
LagrangeEuler
- 717
- 20
It is very well known result that ##grad[e^{i\vec{k}\cdot \vec{r}}]=i\vec{k}e^{i\vec{k}\cdot \vec{r}}##. Also ##\vec{k}\cdot \vec{r}=kr\cos \theta## and ##gradf(r)=\frac{df}{dr} grad r##. Then I can write
[tex]grad e^{ikr\cos \theta}=ik\cos \theta e^{i \vec{k}\cdot \vec{r}} \frac{\vec{r}}{r}=ik\frac{\vec{k}\cdot \vec{r}}{kr}e^{i\vec{k}\cdot \vec{r}} \frac{\vec{r}}{r}[/tex]
Somehow it is the same result only if ##\vec{k}=\frac{(\vec{k}\cdot \vec{r})\vec{r}}{r^2}## and this is not the same. Right?
[tex]grad e^{ikr\cos \theta}=ik\cos \theta e^{i \vec{k}\cdot \vec{r}} \frac{\vec{r}}{r}=ik\frac{\vec{k}\cdot \vec{r}}{kr}e^{i\vec{k}\cdot \vec{r}} \frac{\vec{r}}{r}[/tex]
Somehow it is the same result only if ##\vec{k}=\frac{(\vec{k}\cdot \vec{r})\vec{r}}{r^2}## and this is not the same. Right?
Last edited by a moderator: