I Why Is the Integral Result 175/3 Instead of 45?

  • I
  • Thread starter Thread starter homeworkhelpls
  • Start date Start date
  • Tags Tags
    Area Curve
AI Thread Summary
The integral of y, expressed as (1/3)x^3 + 2x, evaluated from the upper limit of 5 to the lower limit of 2, yields a result of 45, not 175/3. The correct evaluation of 175/3 occurs if the lower limit is set at x=-2. Participants suspect a possible typo or calculation error by the question setter. Additionally, there is a notation clarification suggesting that (1/3)x^3 should be used to avoid confusion with 1/(3x^3). This discussion highlights the importance of precise notation in mathematical expressions.
homeworkhelpls
Messages
41
Reaction score
1
1675365471735.png

i integrated y to get (1/3x^3 + 2x) with upper limit 5 / lower limit 2 but got 45 not 175 / 3
 
Last edited by a moderator:
Mathematics news on Phys.org
homeworkhelpls said:
View attachment 321610
i integrated y to get (1/3x^3 + 2x) with upper limit 5 / lower limit 2 but got 45 not 175 / 3
Both Wolfram Alpha and I agree with you.
 
  • Like
Likes homeworkhelpls and topsquark
Me too!
 
  • Like
Likes homeworkhelpls
The integral would evaluate to 175/3 if the lower limit were x=-2. I suspect a silly typo or calculation slip by the question setter.
 
Last edited:
  • Informative
  • Like
Likes homeworkhelpls and PeroK
homeworkhelpls said:
View attachment 321610
i integrated y to get (1/3x^3 + 2x) with upper limit 5 / lower limit 2 but got 45 not 175 / 3
Just a notation tip. 1/3x^3 can be misread as 1/(3x^3) placing the x^3 in the denominator. To be precise, we can instead write (1/3)x^3 to ensure x^3 is in the numerator and not mistakenly placed in the denominator.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top