- #1
Euge
Gold Member
MHB
POTW Director
- 2,073
- 244
Here is this week's POTW:
-----
Let $F$ be the field of fractions of a unique factorization domain $A$, and let $L$ be an algebraic extension field of $F$. Fix $c\in L$. Prove that the kernel of the evaluation map $\operatorname{ev}_c : A[x] \to L$ is principal.-----
Remember to read the https://mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to https://mathhelpboards.com/forms.php?do=form&fid=2!
-----
Let $F$ be the field of fractions of a unique factorization domain $A$, and let $L$ be an algebraic extension field of $F$. Fix $c\in L$. Prove that the kernel of the evaluation map $\operatorname{ev}_c : A[x] \to L$ is principal.-----
Remember to read the https://mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to https://mathhelpboards.com/forms.php?do=form&fid=2!