- #1
SqueeSpleen
- 141
- 5
If [itex]f_{n} \underset{n \to \infty}{\longrightarrow} f[/itex] in [itex]L^{p}[/itex], [itex]1 \leq p < \infty[/itex], [itex]g_{n} \underset{n \to \infty}{\longrightarrow} g[/itex] pointwise and [itex]|| g_{m} ||_{\infty} \leq M \forall n \in \mathbb{N}[/itex] prove that:
[itex]f_{n} g_{n} \underset{n \to \infty}{\longrightarrow} fg[/itex] in [itex]L^{p}[/itex]
My attemp:
[itex]\displaystyle \int | f_{n} g_{n} - f g_{n} |^{p} = \displaystyle \int | g_{n} | | f_{n} - f |^{p} \leq M^{p} \displaystyle \int | f_{n} - f |^{p}[/itex]
Then [itex]f_{n} g_{n} \underset{n \to \infty}{\longrightarrow} f g_{n}[/itex] in [itex]L^{p}[/itex]
Now let's prove that [itex]f g_{n} \underset{n \to \infty}{\longrightarrow} fg [/itex] in [itex]L^{p}[/itex]
[itex]g_{n} \longrightarrow g[/itex] a.e. [itex]\Longrightarrow g_{n} \underset{\longrightarrow}{m} g[/itex]
[itex]\forall \varepsilon > 0, \forall \delta > 0, \exists n_{0} \in \mathbb{N} / \forall n \geq n_{0} :[/itex]
[itex]| D | = | \{ x / | g_{n} (x) - g(x) | \geq \delta \} | < \varepsilon[/itex]
[itex]\displaystyle \int | f g_{n} - fg |^{p} = \displaystyle \int | f |^{p} | g_{n} - g |^{p} \leq \displaystyle \int_{D} | f |^{p} M^{p} + \displaystyle \int_{D^{c}} | f |^{p} \delta^{p}[/itex]
I know [itex]| D | < \varepsilon[/itex], but [itex]f[/itex] isn't necessarily bounded in [itex] D [/itex], I need to prove that [itex]\int_{D} | f |^{p} \longrightarrow 0[/itex] as [itex]| D | \to 0[/itex]
Anyone has any idea?
Is this approach right or the last step is false and I need to rework the proof enterely?
Edit 2: Edit 1 was completely wrong so I deleted it.
[itex]f_{n} g_{n} \underset{n \to \infty}{\longrightarrow} fg[/itex] in [itex]L^{p}[/itex]
My attemp:
[itex]\displaystyle \int | f_{n} g_{n} - f g_{n} |^{p} = \displaystyle \int | g_{n} | | f_{n} - f |^{p} \leq M^{p} \displaystyle \int | f_{n} - f |^{p}[/itex]
Then [itex]f_{n} g_{n} \underset{n \to \infty}{\longrightarrow} f g_{n}[/itex] in [itex]L^{p}[/itex]
Now let's prove that [itex]f g_{n} \underset{n \to \infty}{\longrightarrow} fg [/itex] in [itex]L^{p}[/itex]
[itex]g_{n} \longrightarrow g[/itex] a.e. [itex]\Longrightarrow g_{n} \underset{\longrightarrow}{m} g[/itex]
[itex]\forall \varepsilon > 0, \forall \delta > 0, \exists n_{0} \in \mathbb{N} / \forall n \geq n_{0} :[/itex]
[itex]| D | = | \{ x / | g_{n} (x) - g(x) | \geq \delta \} | < \varepsilon[/itex]
[itex]\displaystyle \int | f g_{n} - fg |^{p} = \displaystyle \int | f |^{p} | g_{n} - g |^{p} \leq \displaystyle \int_{D} | f |^{p} M^{p} + \displaystyle \int_{D^{c}} | f |^{p} \delta^{p}[/itex]
I know [itex]| D | < \varepsilon[/itex], but [itex]f[/itex] isn't necessarily bounded in [itex] D [/itex], I need to prove that [itex]\int_{D} | f |^{p} \longrightarrow 0[/itex] as [itex]| D | \to 0[/itex]
Anyone has any idea?
Is this approach right or the last step is false and I need to rework the proof enterely?
Edit 2: Edit 1 was completely wrong so I deleted it.
Last edited: