- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hey!
I am looking at the following exercise:
Check if the series $\sum_{n=0}^{\infty} (1-x)x^n$ converges uniformly in $[0,1]$.
That's the solution that the assistant of the professor gave us:
1, & 0 \leq x<1\\
0, & x=1
\end{matrix}\right.$$
If $s(x)=\sum_{n=0}^{\infty} (1-x)x^n=\left\{\begin{matrix}
1, & 0 \leq x<1\\
0, & x=1
\end{matrix}\right.$, we see that $s(x)$ is not continuous at $[0,1]$,so the convergence is not uniform,as $(1-x)x^n$ are continuous at $[0,1]$.
But... why is it $\sum_{n=0}^{\infty} (1-x)x^n=1$,for $x=0$?? (Worried) Isn't it: $\sum_{n=0}^{\infty} (1-x)x^n=\sum_{n=0}^{\infty} 1 \cdot 0^n=\sum_{n=0}^{\infty} 0=0$ ? (Thinking)
I am looking at the following exercise:
Check if the series $\sum_{n=0}^{\infty} (1-x)x^n$ converges uniformly in $[0,1]$.
That's the solution that the assistant of the professor gave us:
- $0 \leq x <1: \sum_{n=0}^{\infty} (1-x)x^n=(1-x) \sum_{n=0}^{\infty}x^n=1 $
- $x=1: \sum_{n=0}^{\infty} (1-x)x^n=\sum_{n=0}^{\infty} 0=0$
1, & 0 \leq x<1\\
0, & x=1
\end{matrix}\right.$$
If $s(x)=\sum_{n=0}^{\infty} (1-x)x^n=\left\{\begin{matrix}
1, & 0 \leq x<1\\
0, & x=1
\end{matrix}\right.$, we see that $s(x)$ is not continuous at $[0,1]$,so the convergence is not uniform,as $(1-x)x^n$ are continuous at $[0,1]$.
But... why is it $\sum_{n=0}^{\infty} (1-x)x^n=1$,for $x=0$?? (Worried) Isn't it: $\sum_{n=0}^{\infty} (1-x)x^n=\sum_{n=0}^{\infty} 1 \cdot 0^n=\sum_{n=0}^{\infty} 0=0$ ? (Thinking)