MHB Why is there a Mass Term in the Denominator of the Spacecraft's Motion Equation?

AI Thread Summary
The discussion focuses on the motion equation of a spacecraft with a solar sail, highlighting the role of mass in the denominator of the acceleration equation. The force from solar radiation pressure is expressed as F = (2SA/c)(r/r^3), while the gravitational force is Fg = - (mμ/r^3)r. The net force combines these two forces, leading to the equation of motion that incorporates mass, ensuring dimensional consistency. It emphasizes the distinction between force and acceleration, clarifying that the term involving mass in the denominator is essential for accurate representation. Understanding these dynamics is crucial for analyzing spacecraft motion under solar radiation pressure.
Dustinsfl
Messages
2,217
Reaction score
5
How does the solution have a m in the denominator next to c?

A perfectly reflecting solar sail is deployed and controlled so that its normal vector is always aligned with the radius vector from the sun.
The force exerted on the spacecraft due to solar radiation pressure is
$$
\mathbf{F} = \frac{2 S A}{c}\frac{\mathbf{r}}{r^3}
$$
where $S$ is the solar intensity, $A$ is the sail area and $c$ is the speed of light.

Show that the equation of motion for the spacecraft is
$$
\ddot{\mathbf{r}} + \left(\mu - \frac{2 S A}{cm}\right)\frac{\mathbf{r}}{r^3} = 0.
$$

The equation of motion for a spacecraft in the absence of a solar sail is
$$
\ddot{\mathbf{r}} = -\frac{\mu}{r^3}\mathbf{r}.
$$
Summing the forces, we have
\begin{alignat*}{3}
\ddot{\mathbf{r}} & = & \frac{2 S A}{c}\frac{\mathbf{r}}{r^3} - \frac{\mu}{r^3}\mathbf{r}\\
\ddot{\mathbf{r}} - \frac{2 S A}{c}\frac{\mathbf{r}}{r^3} + \frac{\mu}{r^3}\mathbf{r} & = & 0\\
\ddot{\mathbf{r}} + \left(\mu - \frac{2 S A}{c}\right)\frac{\mathbf{r}}{r^3} & = & 0
\end{alignat*}
 
Mathematics news on Phys.org
Dustinsfl said:
Summing the forces, we have
\begin{alignat*}{3}
\ddot{\mathbf{r}} & = & \frac{2 S A}{c}\frac{\mathbf{r}}{r^3} - \frac{\mu}{r^3}\mathbf{r}\\
\end{alignat*}
It's important to distinguish between force and acceleration. The left side of the equation above is acceleration. But the first term on the right side is a force while the second term on the right is acceleration. So the equation is not dimensionally consistent.

The gravitational force is ## \mathbf{F}_{\rm g} = - \frac{m\mu}{r^3}\mathbf{r}##.

So, the total force is $$ \mathbf{F}_{\rm net} = \mathbf{F}_{\rm sail} +\mathbf{F}_{ \rm g} = \frac{2 S A}{c}\frac{\mathbf{r}}{r^3} - \frac{m\mu}{r^3}\mathbf{r} $$

Now use ##\ddot{\mathbf{r}} =\large \frac{\mathbf{F}_{\rm net}}{m}##.
 
  • Like
Likes Steve4Physics and Greg Bernhardt
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Replies
2
Views
2K
Replies
1
Views
2K
Replies
3
Views
1K
Replies
47
Views
5K
Replies
3
Views
3K
Back
Top