- #1
struggling_student
- 9
- 1
The matrix representation of a certain operator in a certain basis is
$$\begin{bmatrix} 1 & 0 & 0 \\0 & 0 & -i \\ 0 & i & 0
\end{bmatrix} .$$
The eigenvalue problem leads to this equation
$$0=det\begin{bmatrix} 1-\lambda & 0 & 0 \\0 & -\lambda & -i \\ 0 & i & -\lambda
\end{bmatrix} =-(\lambda-1)^2(\lambda+1).$$
So the eigenvalues are ##1##, ##1## and ##-1##. There is a degenacy and this means that there are two distinct states with the same eigenvalue but I would like to find all the eigenstates, generically denoted as ##\begin{bmatrix} a \\b \\ c \end{bmatrix}##.
First, the non-degenerate ##\lambda=-1## leads to the following equation
$$0=\begin{bmatrix} 2 & 0 & 0 \\0 & 1 & -i \\ 0 & i & 1 \end{bmatrix} \begin{bmatrix} a \\b \\ c \end{bmatrix},$$
$$\therefore 2a=0 \ and \ b=ic.$$
So the nondegenerate eigenstate is ##\begin{bmatrix} 0 \\ic \\ c \end{bmatrix}=\begin{bmatrix} 0 \\i \\ 1 \end{bmatrix}## because without the loss of generality we can set ##c:=1##.
Now, for the degerate ##\lambda=1## the equation is
$$0=\begin{bmatrix} 0 & 0 & 0 \\0 & -1 & -i \\ 0 & i & -1 \end{bmatrix} \begin{bmatrix} a \\b \\ c \end{bmatrix},$$
##\therefore b=-ic##, any value for ##a## will do so the degerate state is ##\begin{bmatrix} a \\-ic \\ c \end{bmatrix}##. How do I interpret this?
I expected to find two different vectors but instead I've got a two-parameter result. What is the degerate state? Is what I wrote not a valid operator? Am I mistaken in thinking that a degerate eigenvalue corresponds to exactly two distinct eigenstates?
$$\begin{bmatrix} 1 & 0 & 0 \\0 & 0 & -i \\ 0 & i & 0
\end{bmatrix} .$$
The eigenvalue problem leads to this equation
$$0=det\begin{bmatrix} 1-\lambda & 0 & 0 \\0 & -\lambda & -i \\ 0 & i & -\lambda
\end{bmatrix} =-(\lambda-1)^2(\lambda+1).$$
So the eigenvalues are ##1##, ##1## and ##-1##. There is a degenacy and this means that there are two distinct states with the same eigenvalue but I would like to find all the eigenstates, generically denoted as ##\begin{bmatrix} a \\b \\ c \end{bmatrix}##.
First, the non-degenerate ##\lambda=-1## leads to the following equation
$$0=\begin{bmatrix} 2 & 0 & 0 \\0 & 1 & -i \\ 0 & i & 1 \end{bmatrix} \begin{bmatrix} a \\b \\ c \end{bmatrix},$$
$$\therefore 2a=0 \ and \ b=ic.$$
So the nondegenerate eigenstate is ##\begin{bmatrix} 0 \\ic \\ c \end{bmatrix}=\begin{bmatrix} 0 \\i \\ 1 \end{bmatrix}## because without the loss of generality we can set ##c:=1##.
Now, for the degerate ##\lambda=1## the equation is
$$0=\begin{bmatrix} 0 & 0 & 0 \\0 & -1 & -i \\ 0 & i & -1 \end{bmatrix} \begin{bmatrix} a \\b \\ c \end{bmatrix},$$
##\therefore b=-ic##, any value for ##a## will do so the degerate state is ##\begin{bmatrix} a \\-ic \\ c \end{bmatrix}##. How do I interpret this?
I expected to find two different vectors but instead I've got a two-parameter result. What is the degerate state? Is what I wrote not a valid operator? Am I mistaken in thinking that a degerate eigenvalue corresponds to exactly two distinct eigenstates?