- #1
euphoricrhino
- 22
- 7
From calculating a few CG-coefficient tables, it occurred to me that when we add two angular mometa ##j_1=l## and ##j_2=1## (with ##l## whole integer), the resulting ##|j=l,m=0\rangle## state always has zero C-G coefficient with ##|j_1=l,j_2=1;m_1=0,m_2=0\rangle## component, i.e., ##\langle j_1=l,j_2=1;m_1=0,m_2=0,|j=l,m=0\rangle=0##.
But the usual C-G coefficient selection rule only dictates ##|j=l,m=0\rangle## may have components in 3 states ##|j_1=l,j_2=1;m_1=-1,m_2=1\rangle, |j_1=l,j_2=1;m_1=0,m_2=0\rangle, |j_1=l,j_2=1;m_1=1,m_2=-1\rangle##. Why was the middle state ##|j_1=l,j_2=1;m_1=0,m_2=0\rangle## forbidden? Is there deeper insights?
Thanks
But the usual C-G coefficient selection rule only dictates ##|j=l,m=0\rangle## may have components in 3 states ##|j_1=l,j_2=1;m_1=-1,m_2=1\rangle, |j_1=l,j_2=1;m_1=0,m_2=0\rangle, |j_1=l,j_2=1;m_1=1,m_2=-1\rangle##. Why was the middle state ##|j_1=l,j_2=1;m_1=0,m_2=0\rangle## forbidden? Is there deeper insights?
Thanks