- #1
tmt1
- 234
- 0
I need to find the Maclaurin series for
$$f(x) = x^2e^x$$
I know
$$e^x = \sum_{n = 0}^{\infty} \frac{x^n}{n!}$$
So, why can't I do
$$x^2 e^x =x^2 \sum_{n = 0}^{\infty} \frac{x^n}{n!} = \sum_{n = 0}^{\infty} \frac{x^2 x^n}{n!} $$
$$f(x) = x^2e^x$$
I know
$$e^x = \sum_{n = 0}^{\infty} \frac{x^n}{n!}$$
So, why can't I do
$$x^2 e^x =x^2 \sum_{n = 0}^{\infty} \frac{x^n}{n!} = \sum_{n = 0}^{\infty} \frac{x^2 x^n}{n!} $$