- #1
PhysicsRock
- 117
- 18
- TL;DR Summary
- Lagrangian of a particle in radial potential isn't invariant under ##\theta## rotations.
I just calculated the Lagrangian of a particle of mass ##m## in a radially symmetric potential ##V(r)##. I thought it would be a good idea to switch to spherical coordinates for that matter. What I get is
$$
L = \frac{1}{2} m \left( \dot{r}^2 + r^2 \dot{\theta}^2 + r^2 \dot{\varphi}^2 \sin^2(\theta) \right) - V(r)
$$
This is typically a well-known result and I am very confident that it's correct. We instantly see that this Lagrangian does not depend on ##\varphi##, only on it's time derivative. Thus, we can introduce an infinitesimal rotational shift ##\delta\varphi##, which will not change the Lagrangian. However, a shift ##\delta\theta## does not leave this expression invariant, since ##\theta## explicitly appears in the Lagrangian. With radial symmetry though, I would expect that both angles can be altered infinitesimally without changing the physics of the system. Since ##\theta## appears in the sine squared term, we could introduce a discrete shift ##\delta\theta = n \pi## with ##n \in \mathbb{N}##. This, however, would not yield a conservation law, since Noether's theorem demands continuous symmetries. I would've expected that angular momentum is conserved here, but using said theorem, the only conserved quantity here would be
$$
\frac{d}{dt} \left( m r^2 \dot{\varphi} \sin^2(\theta) \right) = 0
$$
which looks like a component of angular momentum (EDIT: it is in fact the ##L_\theta## component), but not angular momentum completely.
Why is that?
$$
L = \frac{1}{2} m \left( \dot{r}^2 + r^2 \dot{\theta}^2 + r^2 \dot{\varphi}^2 \sin^2(\theta) \right) - V(r)
$$
This is typically a well-known result and I am very confident that it's correct. We instantly see that this Lagrangian does not depend on ##\varphi##, only on it's time derivative. Thus, we can introduce an infinitesimal rotational shift ##\delta\varphi##, which will not change the Lagrangian. However, a shift ##\delta\theta## does not leave this expression invariant, since ##\theta## explicitly appears in the Lagrangian. With radial symmetry though, I would expect that both angles can be altered infinitesimally without changing the physics of the system. Since ##\theta## appears in the sine squared term, we could introduce a discrete shift ##\delta\theta = n \pi## with ##n \in \mathbb{N}##. This, however, would not yield a conservation law, since Noether's theorem demands continuous symmetries. I would've expected that angular momentum is conserved here, but using said theorem, the only conserved quantity here would be
$$
\frac{d}{dt} \left( m r^2 \dot{\varphi} \sin^2(\theta) \right) = 0
$$
which looks like a component of angular momentum (EDIT: it is in fact the ##L_\theta## component), but not angular momentum completely.
Why is that?
Last edited: