- #1
grelade
- 5
- 0
Hi,
I have free solutions of Dirac equation in the form (without exp(), i also use the contracted 2 dimensional convection ):
for r=1,2 [tex]E=E_p[/tex]
[tex]
\omega^{r=1,2}(\vec{p}) = N \[ \left( \begin{array}{c}
\phi_r \\
\phi_r c \frac{\vec{\sigma}\cdot\vec{p}}{E_p + mc^2} \end{array} \right)\]
[/tex]
r=3,4 [tex]E=-E_p[/tex]
[tex]
\omega^{r=3,4}(\vec{p}) = N \[ \left( \begin{array}{c}
\phi_r c \frac{\vec{\sigma}\cdot\vec{p}}{E_p + mc^2} \\
\phi_r \end{array} \right)\]
[/tex]
I want to calculate one of Dirac bilinears (antisymmetric tensor) for these solutions, namely:
[tex]b^{\mu\nu}_r = \bar{\omega}^r(\vec{p}) \sigma^{\mu\nu}\omega^r(\vec{p}) [/tex]
where
[tex]\sigma^{\mu\nu} = i/2 \left[\gamma^\mu, \gamma^\nu \right] [/tex]
On lectures it was said that it would be zero. However, i couldn't zero it out for [tex]\mu \neq \nu[/tex]. My calculations goes like this (for now i will post only case [tex]b^{j0}, j=1,2,3[/tex]):
[tex]b^{j0}_r = \bar{\omega}^r(\vec{p}) \sigma^{j0}\omega^r(\vec{p}) = i\omega^{r+}\gamma^0\gamma^j\gamma^0\omega^{r} = -i\omega^{r+}\gamma^j\omega^{r}[/tex]
Now, for r=1,2 i put explicit matrices:
[tex]= i N^2 \[ \left( \begin{array}{cc}
\phi_r^+ & \phi_r^+ c \frac{\vec{\sigma}\cdot\vec{p}}{E_p + mc^2} \end{array} \right)\] \[ \left( \begin{array}{cc}
0 & -\sigma_j \\
-\sigma_j & 0 \end{array} \right)\] \[ \left( \begin{array}{c}
\phi_r \\
\phi_r c \frac{\vec{\sigma}\cdot\vec{p}}{E_p + mc^2} \end{array} \right)\] [/tex]
This gives:
[tex]= -i N^2 (\phi_r^+ \frac{\sigma_j \sigma_i p^i}{E_p+mc^2}\phi_r - \phi_r^+ \frac{\sigma_i \sigma_j p^i}{E_p + mc^2}\phi_r) = -i N^2 (\phi_r^+ \frac{\left [\sigma_j, \sigma_i \right] p^i}{E_p+mc^2}\phi_r)[/tex]
Commutator of Pauli matrices:
[tex]\left [\sigma_j,\sigma_i \right] = 2i \epsilon_{jik}\sigma_k[/tex]
So after inserting this we have something like this:
[tex]= \frac{2 N^2\epsilon_{jik}\sigma_k p^i}{E_p + mc^2} [/tex]
Unfortunately i cannot find any reason why this should be zero. Maybe someone could help me by telling what is wrong or tell that it shouldn't be zero in the first place?
I have free solutions of Dirac equation in the form (without exp(), i also use the contracted 2 dimensional convection ):
for r=1,2 [tex]E=E_p[/tex]
[tex]
\omega^{r=1,2}(\vec{p}) = N \[ \left( \begin{array}{c}
\phi_r \\
\phi_r c \frac{\vec{\sigma}\cdot\vec{p}}{E_p + mc^2} \end{array} \right)\]
[/tex]
r=3,4 [tex]E=-E_p[/tex]
[tex]
\omega^{r=3,4}(\vec{p}) = N \[ \left( \begin{array}{c}
\phi_r c \frac{\vec{\sigma}\cdot\vec{p}}{E_p + mc^2} \\
\phi_r \end{array} \right)\]
[/tex]
I want to calculate one of Dirac bilinears (antisymmetric tensor) for these solutions, namely:
[tex]b^{\mu\nu}_r = \bar{\omega}^r(\vec{p}) \sigma^{\mu\nu}\omega^r(\vec{p}) [/tex]
where
[tex]\sigma^{\mu\nu} = i/2 \left[\gamma^\mu, \gamma^\nu \right] [/tex]
On lectures it was said that it would be zero. However, i couldn't zero it out for [tex]\mu \neq \nu[/tex]. My calculations goes like this (for now i will post only case [tex]b^{j0}, j=1,2,3[/tex]):
[tex]b^{j0}_r = \bar{\omega}^r(\vec{p}) \sigma^{j0}\omega^r(\vec{p}) = i\omega^{r+}\gamma^0\gamma^j\gamma^0\omega^{r} = -i\omega^{r+}\gamma^j\omega^{r}[/tex]
Now, for r=1,2 i put explicit matrices:
[tex]= i N^2 \[ \left( \begin{array}{cc}
\phi_r^+ & \phi_r^+ c \frac{\vec{\sigma}\cdot\vec{p}}{E_p + mc^2} \end{array} \right)\] \[ \left( \begin{array}{cc}
0 & -\sigma_j \\
-\sigma_j & 0 \end{array} \right)\] \[ \left( \begin{array}{c}
\phi_r \\
\phi_r c \frac{\vec{\sigma}\cdot\vec{p}}{E_p + mc^2} \end{array} \right)\] [/tex]
This gives:
[tex]= -i N^2 (\phi_r^+ \frac{\sigma_j \sigma_i p^i}{E_p+mc^2}\phi_r - \phi_r^+ \frac{\sigma_i \sigma_j p^i}{E_p + mc^2}\phi_r) = -i N^2 (\phi_r^+ \frac{\left [\sigma_j, \sigma_i \right] p^i}{E_p+mc^2}\phi_r)[/tex]
Commutator of Pauli matrices:
[tex]\left [\sigma_j,\sigma_i \right] = 2i \epsilon_{jik}\sigma_k[/tex]
So after inserting this we have something like this:
[tex]= \frac{2 N^2\epsilon_{jik}\sigma_k p^i}{E_p + mc^2} [/tex]
Unfortunately i cannot find any reason why this should be zero. Maybe someone could help me by telling what is wrong or tell that it shouldn't be zero in the first place?