Why should the solution be periodic?

  • MHB
  • Thread starter mathmari
  • Start date
  • Tags
    Periodic
In summary, the Laplace's equation with polar coordinates involves a boundary value problem with Dirichlet boundary conditions on a disc with center at the origin and radius $a$. The solution is found using the method of separation of variables, where the solution is of the form $u(r,\theta) = R(r)\Theta(\theta)$. The boundary condition requires $\Theta(\theta)$ to be periodic with period $2\pi$. When solving for $\Theta(\theta)$, the case for $\lambda<0$ is rejected as the exponential is not periodic, while for $\lambda>0$, the solution is $\Theta(\theta) = c_1\cos(\sqrt{\lambda}\theta) + c_2\sin(\
  • #1
mathmari
Gold Member
MHB
5,049
7
Hey! :eek:

The Laplace's equation with polar coordinates is:
$$u_{rr}+\frac{1}{r} u_r +\frac{1}{r^2} u_{\theta \theta}=0$$

We suppose the boundary value problem with Dirichlet boundary conditions for the Laplace's equation on a disc with center the origin of axis and radius $a$:

$$u_{rr}+\frac{1}{r} u_r +\frac{1}{r^2} u_{\theta \theta}=0, \ \ \ \ 0 \leq r \leq a, \ \ \ 0 \leq \theta \leq 2 \pi$$
$$u(a,\theta)=h(\theta), \ \ \ \ 0 \leq \theta \leq 2 \pi$$

The boundary condition should be continuous everywhere, so $h(0)=h(2 \pi)$.

Solving the problem with the method separation of variables, we have the following:

The solution is of the form $u(r , \theta)= R(r) \Theta(\theta)$, which are continuous at $[0,a] \times [0 , 2 \pi]$ and periodic as for $\theta$, with period $2 \pi$.

So we get the problems:

$$(1):\Theta''+\lambda\Theta=0$$
$$\Theta(0)=\Theta(2 \pi)$$

and

$$(2):r^2 R'+rR'-\lambda R=0$$

For the problem $(1)$:

So that there is a non-trivial periodic solution it should be $\lambda \geq 0$.

$\lambda_0=0: \Theta_0(\theta)=1$

$\lambda=n^2: \Theta(\theta)=A_n \cos{(n \theta)}+B_n \sin{(n \theta)}$
Why should the solution of $\Theta$ be periodic?? (Wondering)

And the case $\lambda<0$, where the solution would be of the form: $\Theta=c_1e^{n \theta}+c_2e^{-n \theta}$, is rejected, because the exponential is not periodic?? (Wondering)

And also, why at the case $\lambda>0$ do we take: $\lambda=n^2$?? (Wondering)
 
Physics news on Phys.org
  • #2
Hi! ;)

mathmari said:
Why should the solution of $\Theta$ be periodic?? (Wondering)

$\Theta$ is a function of the angle $\theta$.
Since there are $2\pi$ radians in a full circle that means that $\Theta(0)= \Theta(2\pi)$.
Moreover, any value must be identical to a value $2\pi$ radians along on the circle.
That is because it is the same point. (Nerd)
And the case $\lambda<0$, where the solution would be of the form: $\Theta=c_1e^{n \theta}+c_2e^{-n \theta}$, is rejected, because the exponential is not periodic?? (Wondering)

Correct.
It will not hold that $\Theta(\theta) = \Theta(\theta + 2\pi)$.
And also, why at the case $\lambda>0$ do we take: $\lambda=n^2$?? (Wondering)

Perhaps you can solve it with just $\lambda>0$?
What does your solution look like? (Wondering)
 
  • #3
I like Serena said:
$\Theta$ is a function of the angle $\theta$.
Since there are $2\pi$ radians in a full circle that means that $\Theta(0)= \Theta(2\pi)$.
Moreover, any value must be identical to a value $2\pi$ radians along on the circle.
That is because it is the same point. (Nerd)

Ok! I understand! (Nod)

I like Serena said:
Correct.
It will not hold that $\Theta(\theta) = \Theta(\theta + 2\pi)$.
Besides noticing that the exponential is not periodic, if we would solve this problem taking cases for $\lambda$ would the case $\lambda<0$ be rejected when applying the boundary conditions?

I mean the following:

The characteristic equation is $m^2+\lambda =0 \Rightarrow m^2=-\lambda$

$\lambda<0: \lambda=-k, k>0$
$m^2=k \Rightarrow m= \pm \sqrt{k}$
$\Theta(\theta)=c_1e^{\sqrt{k} \theta}+c_2 e^{-\sqrt{k} \theta}$
$\Theta(0)=c_1+c_2 $
$\Theta(2 \pi)=c_1e^{\sqrt{k} 2 \pi}+c_2 e^{-2 \sqrt{k} \pi }$
$\Theta(0)=\Theta(2 \pi) \Rightarrow c_1+c_2=c_1e^{\sqrt{k} 2 \pi}+c_2 e^{-2 \sqrt{k} \pi } \Rightarrow e^{\sqrt{k} 2 \pi}c_1=c_2$
Is this correct?? How could I continue to find out that we cannot have a non-trivial solution at this case?? Or can we not do this in that way?? (Wondering)
I like Serena said:
Perhaps you can solve it with just $\lambda>0$?
What does your solution look like? (Wondering)

$\lambda>0:$
$\Theta(\theta)=c_1 \cos{(\sqrt{\lambda} \theta)}+c_2 \sin{(\sqrt{\lambda} \theta)}$
$\Theta(0)=c_1 $
$\Theta(2 \pi)=c_1 \cos{(\sqrt{\lambda} 2 \pi)}+c_2 \sin{(\sqrt{\lambda} 2 \pi)}$
$\Theta(0)=\Theta(2 \pi) \Rightarrow c_1=c_1 \cos{(\sqrt{\lambda} 2 \pi)}+c_2 \sin{(\sqrt{\lambda} 2 \pi)} \Rightarrow c_1(1-\cos{(\sqrt{\lambda} 2 \pi)})=c_2 \sin{(\sqrt{\lambda} 2 \pi)}$

How could I continue?? (Wondering)
 
  • #4
mathmari said:
Besides noticing that the exponential is not periodic, if we would solve this problem taking cases for $\lambda$ would the case $\lambda<0$ be rejected when applying the boundary conditions?

I mean the following:

The characteristic equation is $m^2+\lambda =0 \Rightarrow m^2=-\lambda$

$\lambda<0: \lambda=-k, k>0$
$m^2=k \Rightarrow m= \pm \sqrt{k}$
$\Theta(\theta)=c_1e^{\sqrt{k} \theta}+c_2 e^{-\sqrt{k} \theta}$
$\Theta(0)=c_1+c_2 $
$\Theta(2 \pi)=c_1e^{\sqrt{k} 2 \pi}+c_2 e^{-2 \sqrt{k} \pi }$
$\Theta(0)=\Theta(2 \pi) \Rightarrow c_1+c_2=c_1e^{\sqrt{k} 2 \pi}+c_2 e^{-2 \sqrt{k} \pi } \Rightarrow e^{\sqrt{k} 2 \pi}c_1=c_2$
Is this correct?? How could I continue to find out that we cannot have a non-trivial solution at this case?? Or can we not do this in that way?? (Wondering)

The boundary condition is a bit stronger.
We need that:
$$\Theta(\theta) = \Theta(\theta + 2\pi n)$$
for any $\theta$ and for any integer $n$.

What would happen if we substitute that? (Wondering)
$\lambda>0:$
$\Theta(\theta)=c_1 \cos{(\sqrt{\lambda} \theta)}+c_2 \sin{(\sqrt{\lambda} \theta)}$
$\Theta(0)=c_1 $
$\Theta(2 \pi)=c_1 \cos{(\sqrt{\lambda} 2 \pi)}+c_2 \sin{(\sqrt{\lambda} 2 \pi)}$
$\Theta(0)=\Theta(2 \pi) \Rightarrow c_1=c_1 \cos{(\sqrt{\lambda} 2 \pi)}+c_2 \sin{(\sqrt{\lambda} 2 \pi)} \Rightarrow c_1(1-\cos{(\sqrt{\lambda} 2 \pi)})=c_2 \sin{(\sqrt{\lambda} 2 \pi)}$

How could I continue?? (Wondering)

Same thing. (Sweating)
 
  • #5
I like Serena said:
The boundary condition is a bit stronger.
We need that:
$$\Theta(\theta) = \Theta(\theta + 2\pi n)$$
for any $\theta$ and for any integer $n$.

What would happen if we substitute that? (Wondering)

$\lambda<0: \lambda=-k, k>0$
$m^2=k \Rightarrow m= \pm \sqrt{k}$
$\Theta(\theta)=c_1e^{\sqrt{k} \theta}+c_2 e^{-\sqrt{k} \theta}$
$\Theta(\theta +2 \pi n)=c_1e^{\sqrt{k} (\theta +2 \pi n)}+c_2 e^{-\sqrt{k}( \theta +2 \pi n)}$

$\Theta(\theta) = \Theta(\theta + 2\pi n) \Rightarrow c_1e^{\sqrt{k} \theta}+c_2 e^{-\sqrt{k} \theta}=c_1e^{\sqrt{k} (\theta +2 \pi n)}+c_2 e^{-\sqrt{k}( \theta +2 \pi n)} \Rightarrow c_1(e^{\sqrt{k} \theta}-e^{\sqrt{k}( \theta +2 \pi n)})=c_2(e^{-\sqrt{k} (\theta+ 2 \pi n)} -e^{-\sqrt{k} \theta}) $

How could I continue?? (Wondering) I got stuck right now.. (Worried)
 
  • #6
mathmari said:
$\lambda<0: \lambda=-k, k>0$
$m^2=k \Rightarrow m= \pm \sqrt{k}$
$\Theta(\theta)=c_1e^{\sqrt{k} \theta}+c_2 e^{-\sqrt{k} \theta}$
$\Theta(\theta +2 \pi n)=c_1e^{\sqrt{k} (\theta +2 \pi n)}+c_2 e^{-\sqrt{k}( \theta +2 \pi n)}$

$\Theta(\theta) = \Theta(\theta + 2\pi n) \Rightarrow c_1e^{\sqrt{k} \theta}+c_2 e^{-\sqrt{k} \theta}=c_1e^{\sqrt{k} (\theta +2 \pi n)}+c_2 e^{-\sqrt{k}( \theta +2 \pi n)} \Rightarrow c_1(e^{\sqrt{k} \theta}-e^{\sqrt{k}( \theta +2 \pi n)})=c_2(e^{-\sqrt{k} (\theta+ 2 \pi n)} -e^{-\sqrt{k} \theta}) $

How could I continue?? (Wondering) I got stuck right now.. (Worried)

It is not possible. (Worried)

We have:
$$c_1e^{\sqrt{k} \theta}+c_2 e^{-\sqrt{k} \theta} = c_1e^{\sqrt{k} (\theta +2 \pi n)}+c_2 e^{-\sqrt{k}( \theta +2 \pi n)}$$
$$c_1e^{\sqrt{k} (\theta +2 \pi n)} - c_1e^{\sqrt{k} \theta} = c_2 e^{-\sqrt{k} \theta} - c_2 e^{-\sqrt{k}( \theta +2 \pi n)}$$
Suppose $c_1 > 0$ and $n > 0$, then both sides are positive.
And for large enough $\theta$ the right hand side becomes as small as we want it to be.
Let's say the right hand side is smaller than $\epsilon > 0$.

Then we have:
$$|c_1 e^{\sqrt k (\theta + 2\pi n)} - c_1 e^{\sqrt k \theta}| < \epsilon$$
$$c_1 e^{\sqrt k \theta} | e^{\sqrt k \cdot 2\pi n} - 1| < \epsilon$$
But the left hand side can become as big as we want it to be, since we can pick $n$ as big as we want.
This is a contradiction.

So there is no solution for $\lambda<0$. (Wasntme)
 
  • #7
I like Serena said:
It is not possible. (Worried)

We have:
$$c_1e^{\sqrt{k} \theta}+c_2 e^{-\sqrt{k} \theta} = c_1e^{\sqrt{k} (\theta +2 \pi n)}+c_2 e^{-\sqrt{k}( \theta +2 \pi n)}$$
$$c_1e^{\sqrt{k} (\theta +2 \pi n)} - c_1e^{\sqrt{k} \theta} = c_2 e^{-\sqrt{k} \theta} - c_2 e^{-\sqrt{k}( \theta +2 \pi n)}$$
Suppose $c_1 > 0$ and $n > 0$, then both sides are positive.
And for large enough $\theta$ the right hand side becomes as small as we want it to be.
Let's say the right hand side is smaller than $\epsilon > 0$.

Then we have:
$$|c_1 e^{\sqrt k (\theta + 2\pi n)} - c_1 e^{\sqrt k \theta}| < \epsilon$$
$$c_1 e^{\sqrt k \theta} | e^{\sqrt k \cdot 2\pi n} - 1| < \epsilon$$
But the left hand side can become as big as we want it to be, since we can pick $n$ as big as we want.
This is a contradiction.

So there is no solution for $\lambda<0$. (Wasntme)

Ahaa..Ok! (Thinking)(Sweating)Is this the same at the case $\lambda>0$?

$\Theta(\theta)=c_1 \cos{(\sqrt{\lambda} \theta)}+c_2 \sin{(\sqrt{\lambda} \theta)}$
$\Theta(\theta+2 \pi n)=c_1 \cos{(\sqrt{\lambda} (\theta+2 \pi n))}+c_2 \sin{(\sqrt{\lambda} (\theta+2 \pi n))}$

$\Theta(\theta)=\Theta(\theta+2 \pi n) \Rightarrow c_1 \cos{(\sqrt{\lambda} \theta)}+c_2 \sin{(\sqrt{\lambda} \theta)}=c_1 \cos{(\sqrt{\lambda} (\theta+2 \pi n))}+c_2 \sin{(\sqrt{\lambda} (\theta+2 \pi n))} \Rightarrow c_1(\cos{(\sqrt{\lambda} \theta)}-\cos{(\sqrt{\lambda} (\theta+2 \pi n))})=c_2(\sin{(\sqrt{\lambda} (\theta+2 \pi n))}- \sin{(\sqrt{\lambda} \theta)}) $

Could I continue from here? (Wondering)
Or is there an other way to check this case?
How can I conclude that $\lambda = n^2$ ? (Wondering)
 
  • #8
mathmari said:
Ahaa..Ok! (Thinking)(Sweating)Is this the same at the case $\lambda>0$?

$\Theta(\theta)=c_1 \cos{(\sqrt{\lambda} \theta)}+c_2 \sin{(\sqrt{\lambda} \theta)}$
$\Theta(\theta+2 \pi n)=c_1 \cos{(\sqrt{\lambda} (\theta+2 \pi n))}+c_2 \sin{(\sqrt{\lambda} (\theta+2 \pi n))}$

$\Theta(\theta)=\Theta(\theta+2 \pi n) \Rightarrow c_1 \cos{(\sqrt{\lambda} \theta)}+c_2 \sin{(\sqrt{\lambda} \theta)}=c_1 \cos{(\sqrt{\lambda} (\theta+2 \pi n))}+c_2 \sin{(\sqrt{\lambda} (\theta+2 \pi n))} \Rightarrow c_1(\cos{(\sqrt{\lambda} \theta)}-\cos{(\sqrt{\lambda} (\theta+2 \pi n))})=c_2(\sin{(\sqrt{\lambda} (\theta+2 \pi n))}- \sin{(\sqrt{\lambda} \theta)}) $

Could I continue from here? (Wondering)
Or is there an other way to check this case?
How can I conclude that $\lambda = n^2$ ? (Wondering)

This has to be true for any $\theta$.
That can only happen if the terms cancel.

That is, if we assume that $c_1 \ne 0$, we get that:
$$\cos(\sqrt{\lambda} \theta)-\cos(\sqrt{\lambda} (\theta+2 \pi n)) = 0$$
This can only be true if $\sqrt \lambda$ is an integer. (Thinking)
 
  • #9
I like Serena said:
This has to be true for any $\theta$.
That can only happen if the terms cancel.

That is, if we assume that $c_1 \ne 0$, we get that:
$$\cos(\sqrt{\lambda} \theta)-\cos(\sqrt{\lambda} (\theta+2 \pi n)) = 0$$
This can only be true if $\sqrt \lambda$ is an integer. (Thinking)

I haven't understood why that happens only if the terms cancel.. (Doh)
 
  • #10
mathmari said:
I haven't understood why that happens only if the terms cancel.. (Doh)

Can you simplify:
$$c_1(\cos{(\sqrt{\lambda} \theta)}-\cos{(\sqrt{\lambda} (\theta+2 \pi n))})=c_2(\sin{(\sqrt{\lambda} (\theta+2 \pi n))}- \sin{(\sqrt{\lambda} \theta)})$$

I suggest to use the sum-to-product identities:
$$\cos p - \cos q = -2\sin\frac 1 2(p+q) \sin\frac 1 2(p-q)$$
$$\sin p - \sin q = 2\cos\frac 1 2(p+q) \sin\frac 1 2(p-q)$$
(Thinking)
 
  • #11
I like Serena said:
Can you simplify:
$$c_1(\cos{(\sqrt{\lambda} \theta)}-\cos{(\sqrt{\lambda} (\theta+2 \pi n))})=c_2(\sin{(\sqrt{\lambda} (\theta+2 \pi n))}- \sin{(\sqrt{\lambda} \theta)})$$

I suggest to use the sum-to-product identities:
$$\cos p - \cos q = -2\sin\frac 1 2(p+q) \sin\frac 1 2(p-q)$$
$$\sin p - \sin q = 2\cos\frac 1 2(p+q) \sin\frac 1 2(p-q)$$
(Thinking)

$$c_1(\cos{(\sqrt{\lambda} \theta)}-\cos{(\sqrt{\lambda} (\theta+2 \pi n))})=c_2(\sin{(\sqrt{\lambda} (\theta+2 \pi n))}- \sin{(\sqrt{\lambda} \theta)}) \Rightarrow \\

-2 c_1 \sin{(\frac{1}{2} (\sqrt{\lambda} \theta+\sqrt{\lambda} (\theta+2 \pi n)))} \sin{(\frac{1}{2} (\sqrt{\lambda} \theta-\sqrt{\lambda} (\theta+2 \pi n)))} =2 c_2 \cos{(\frac{1}{2} (\sqrt{\lambda} \theta+\sqrt{\lambda} (\theta+2 \pi n)))} \sin{(\frac{1}{2} (\sqrt{\lambda} \theta-\sqrt{\lambda} (\theta+2 \pi n)))} \Rightarrow \\

-c_1 \sin{( \sqrt{\lambda} (\theta+ \pi n))} = c_2 \cos{(\sqrt{\lambda} (\theta+ \pi n))} $$

Is this correct so far??

How can I continue?? (Wondering)
 
  • #12
mathmari said:
$$c_1(\cos{(\sqrt{\lambda} \theta)}-\cos{(\sqrt{\lambda} (\theta+2 \pi n))})=c_2(\sin{(\sqrt{\lambda} (\theta+2 \pi n))}- \sin{(\sqrt{\lambda} \theta)}) \Rightarrow \\

-2 c_1 \sin{(\frac{1}{2} (\sqrt{\lambda} \theta+\sqrt{\lambda} (\theta+2 \pi n)))} \sin{(\frac{1}{2} (\sqrt{\lambda} \theta-\sqrt{\lambda} (\theta+2 \pi n)))} =2 c_2 \cos{(\frac{1}{2} (\sqrt{\lambda} \theta+\sqrt{\lambda} (\theta+2 \pi n)))} \sin{(\frac{1}{2} (\sqrt{\lambda} \theta-\sqrt{\lambda} (\theta+2 \pi n)))} \Rightarrow \\

-c_1 \sin{( \sqrt{\lambda} (\theta+ \pi n))} = c_2 \cos{(\sqrt{\lambda} (\theta+ \pi n))} $$

Is this correct so far??

You seem to have dropped a $-$ sign. :eek:
Note that:
$$\sin{(\frac{1}{2} (\sqrt{\lambda} \theta-\sqrt{\lambda} (\theta+2 \pi n)))}
= \sin{(- \sqrt{\lambda} \pi n)}
= - \sin{(\sqrt{\lambda} \pi n)}$$

How can I continue?? (Wondering)

This should be true for any $\theta$ and $n$.
Suppose we pick $\theta = 0$ and $n=0$... (Thinking)
 
  • #13
I like Serena said:
You seem to have dropped a $-$ sign. :eek:
Note that:
$$\sin{(\frac{1}{2} (\sqrt{\lambda} \theta-\sqrt{\lambda} (\theta+2 \pi n)))}
= \sin{(- \sqrt{\lambda} \pi n)}
= - \sin{(\sqrt{\lambda} \pi n)}$$
This should be true for any $\theta$ and $n$.
Suppose we pick $\theta = 0$ and $n=0$... (Thinking)
$$c_1(\cos{(\sqrt{\lambda} \theta)}-\cos{(\sqrt{\lambda} (\theta+2 \pi n))})=c_2(\sin{(\sqrt{\lambda} (\theta+2 \pi n))}- \sin{(\sqrt{\lambda} \theta)}) \Rightarrow \\

-2 c_1 \sin{(\frac{1}{2} (\sqrt{\lambda} \theta+\sqrt{\lambda} (\theta+2 \pi n)))} \sin{(\frac{1}{2} (\sqrt{\lambda} \theta-\sqrt{\lambda} (\theta+2 \pi n)))} =-2 c_2 \cos{(\frac{1}{2} (\sqrt{\lambda} \theta+\sqrt{\lambda} (\theta+2 \pi n)))} \sin{(\frac{1}{2} (\sqrt{\lambda} \theta-\sqrt{\lambda} (\theta+2 \pi n)))} \Rightarrow \\

c_1 \sin{( \sqrt{\lambda} (\theta+ \pi n))} = c_2 \cos{(\sqrt{\lambda} (\theta+ \pi n))} \Rightarrow \\

c_1 \sin{( \sqrt{\lambda} \theta+ \sqrt{\lambda}\pi n)} = c_2 \cos{(\sqrt{\lambda} \theta+ \sqrt{\lambda}\pi n)} \Rightarrow \\

c_1(\sin{(\sqrt{\lambda} \theta)} \cos{(\sqrt{\lambda} \pi n)}+\cos{(\sqrt{\lambda} \theta)} \sin{(\sqrt{\lambda} \pi n)})=c_2(\cos{(\sqrt{\lambda} \theta)} \cos{(\sqrt{\lambda} \pi n)}-\sin{(\sqrt{\lambda} \theta)} \sin{(\sqrt{\lambda} \pi n)})

$$

Is it better now? Can I get from the last relation something usefull? Or didn't I have to write in that way? (Wondering)
 
  • #14
Yep! All better! (Nod)

Let's stick with:
$$c_1 \sin{( \sqrt{\lambda} (\theta+ \pi n))} = c_2 \cos{(\sqrt{\lambda} (\theta+ \pi n))}$$
What do you get if you substitute $\theta=0$ and simultaneously $n=0$? (Thinking)
 
  • #15
I like Serena said:
Yep! All better! (Nod)

Let's stick with:
$$c_1 \sin{( \sqrt{\lambda} (\theta+ \pi n))} = c_2 \cos{(\sqrt{\lambda} (\theta+ \pi n))}$$
What do you get if you substitute $\theta=0$ and simultaneously $n=0$? (Thinking)

For $\theta=0$ and $n=0$:
$$0= c_2 $$

So do we take $c_2=0$ and replace it at $c_1 \sin{( \sqrt{\lambda} (\theta+ \pi n))} = c_2 \cos{(\sqrt{\lambda} (\theta+ \pi n))}$?

Then we get:
$$c_1 \sin{( \sqrt{\lambda} (\theta+ \pi n))}=0 \Rightarrow \\ \sin{( \sqrt{\lambda} (\theta+ \pi n))}=0 \Rightarrow \\ \sqrt{\lambda} (\theta+ \pi n)=n \pi \Rightarrow \\ \sqrt{\lambda}=\frac{n \pi}{\theta+n \pi} \Rightarrow \\ \lambda=(\frac{n \pi}{\theta+n \pi})^2 $$Is $\displaystyle{\frac{n \pi}{\theta+n \pi}}$ an integer?? (Thinking) It isn't, right?
 
  • #16
mathmari said:
$$\lambda=(\frac{n \pi}{\theta+n \pi})^2 $$

Is $\displaystyle{\frac{n \pi}{\theta+n \pi}}$ an integer?? (Thinking) It isn't, right?

Hold on! :eek:
$\lambda$ is a constant, while $(\frac{n \pi}{\theta+n \pi})^2$ is not a constant.
This is supposed to be true for any $\theta$ and $n$.
I don't think it is, is it?Let's back up a step.

mathmari said:
$$-2 c_1 \sin{(\frac{1}{2} (\sqrt{\lambda} \theta+\sqrt{\lambda} (\theta+2 \pi n)))} \sin{(\frac{1}{2} (\sqrt{\lambda} \theta-\sqrt{\lambda} (\theta+2 \pi n)))} =-2 c_2 \cos{(\frac{1}{2} (\sqrt{\lambda} \theta+\sqrt{\lambda} (\theta+2 \pi n)))} \sin{(\frac{1}{2} (\sqrt{\lambda} \theta-\sqrt{\lambda} (\theta+2 \pi n)))} \Rightarrow \\

c_1 \sin{( \sqrt{\lambda} (\theta+ \pi n))} = c_2 \cos{(\sqrt{\lambda} (\theta+ \pi n))}
$$

Actually, didn't you drop a possible solution here?

What if $\sin{(\frac{1}{2} (\sqrt{\lambda} \theta-\sqrt{\lambda} (\theta+2 \pi n)))} = 0$? (Thinking)

See my avatar for what could be going wrong. (Evilgrin)
 
  • #17
I like Serena said:
Actually, didn't you drop a possible solution here?

What if $\sin{(\frac{1}{2} (\sqrt{\lambda} \theta-\sqrt{\lambda} (\theta+2 \pi n)))} = 0$? (Thinking)

See my avatar for what could be going wrong. (Evilgrin)

(Blush)

$\sin{(\frac{1}{2} (\sqrt{\lambda} \theta-\sqrt{\lambda} (\theta+2 \pi n)))} = 0 \Rightarrow \sin{(\sqrt{\lambda} \pi n)}=0 \Rightarrow \sqrt{\lambda} \pi n= k \pi \Rightarrow \sqrt{\lambda}=\frac{k}{n}$

Is this correct? (Wondering)

But we do not know if $\displaystyle{\frac{k}{n}}$ is an integer, do we? (Wondering)
 
Last edited by a moderator:

FAQ: Why should the solution be periodic?

Why is it important for a solution to be periodic?

Periodicity in a solution means that it repeats itself at regular intervals, which is important in many scientific fields because it allows us to make predictions and understand patterns in the data. This is especially useful in studying systems that involve oscillations or cycles, such as in physics, chemistry, and biology.

What are the advantages of a periodic solution?

A periodic solution allows for easier analysis and visualization of data, as well as making it easier to identify trends and relationships between variables. It also allows us to make predictions and understand the behavior of a system over time.

How does periodicity relate to stability in a solution?

A periodic solution is often associated with stability because it indicates a state of equilibrium or balance in the system. In other words, the system is able to maintain a certain pattern or behavior without significant deviations or changes.

Can a solution be both periodic and chaotic?

Yes, it is possible for a solution to exhibit both periodic and chaotic behavior. This is known as "periodic chaos" and occurs when a system shows a repeating pattern but with small variations or fluctuations within each cycle.

What are some real-world applications of periodic solutions?

Periodic solutions have many practical applications in various fields, such as in engineering for designing stable and predictable systems, in economics for analyzing market trends, and in weather forecasting for predicting seasonal patterns. Periodic solutions also play a crucial role in understanding biological processes, such as the circadian rhythm in living organisms.

Similar threads

Replies
36
Views
1K
Replies
6
Views
3K
Replies
4
Views
2K
Replies
3
Views
2K
Replies
33
Views
4K
Replies
1
Views
1K
Replies
1
Views
6K
Replies
7
Views
1K
Replies
16
Views
2K
Replies
2
Views
2K
Back
Top