- #1
AxiomOfChoice
- 533
- 1
I've never really thought about this before, but today it hit me: Why do we define the Fourier transform of a function to be
[tex]
\hat f(k) = \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^\infty f(x) e^{ikx} dx
[/tex]
What do we lose if we just define it to be
[tex]
\hat f(k) = \int_{-\infty}^\infty f(x) e^{ikx} dx
[/tex]
[tex]
\hat f(k) = \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^\infty f(x) e^{ikx} dx
[/tex]
What do we lose if we just define it to be
[tex]
\hat f(k) = \int_{-\infty}^\infty f(x) e^{ikx} dx
[/tex]