- #1
MichPod
- 231
- 45
The Lagrangian in classical mechanics is known to be a difference of the kinetic and potential energy. My first question is - why? I.e. are there any reasons (except for "because it works this way") to have it as this difference of energies?
The second question is why is it this very value which takes a minumum when integrated over time. But this, of course, is nearly the same question, as the first one. But really, what is the Action? What is the meaning of the value of Energy*Time?
I don't have a problem to understand that there must be some variational problem for which the Newton equations are the solution. Nor that the "minimal action" principle may follow from quantum mechanics. I'm rather interested to understand why the Lagrangian (or action) takes this form in classical mechanics.
The second question is why is it this very value which takes a minumum when integrated over time. But this, of course, is nearly the same question, as the first one. But really, what is the Action? What is the meaning of the value of Energy*Time?
I don't have a problem to understand that there must be some variational problem for which the Newton equations are the solution. Nor that the "minimal action" principle may follow from quantum mechanics. I'm rather interested to understand why the Lagrangian (or action) takes this form in classical mechanics.