- #1
TimeRip496
- 254
- 5
I just started learning this so I am a bit lost. This is where I am lost http://www.nyu.edu/classes/tuckerman/quant.mech/lectures/lecture_7/node1.html .
Why when E>0, we use $$\phi_p=
\begin{pmatrix}
1 \\
0 \\
\end{pmatrix}
$$ or $$
\begin{pmatrix}
0 \\
1 \\
\end{pmatrix}
$$
while when E<0, we use this instead
$$x_p=
\begin{pmatrix}
1 \\
0 \\
\end{pmatrix}
$$ or $$
\begin{pmatrix}
0 \\
1 \\
\end{pmatrix}
$$
where ∅p is the upper component while xp is the lower component of the bispinor in Dirac equation.
Can we do it the other way round or
$$\phi_p=
\begin{pmatrix}
1 \\
0 \\
0 \\
0 \\
\end{pmatrix}
...$$ instead?Secondly, how did the author convert $$\phi_p = \frac{c \sigma .p}{E_p -mc^2}x_p=?=\frac{-c \sigma .p}{|E_p| +mc^2}x_p$$? Does the mod sign means anything?
Can someone help me or point me in the right direction cause this is my first time learning this. Thanks a lot!
Why when E>0, we use $$\phi_p=
\begin{pmatrix}
1 \\
0 \\
\end{pmatrix}
$$ or $$
\begin{pmatrix}
0 \\
1 \\
\end{pmatrix}
$$
while when E<0, we use this instead
$$x_p=
\begin{pmatrix}
1 \\
0 \\
\end{pmatrix}
$$ or $$
\begin{pmatrix}
0 \\
1 \\
\end{pmatrix}
$$
where ∅p is the upper component while xp is the lower component of the bispinor in Dirac equation.
Can we do it the other way round or
$$\phi_p=
\begin{pmatrix}
1 \\
0 \\
0 \\
0 \\
\end{pmatrix}
...$$ instead?Secondly, how did the author convert $$\phi_p = \frac{c \sigma .p}{E_p -mc^2}x_p=?=\frac{-c \sigma .p}{|E_p| +mc^2}x_p$$? Does the mod sign means anything?
Can someone help me or point me in the right direction cause this is my first time learning this. Thanks a lot!