- #1
pstq
- 10
- 0
Hi all!
I have to show:
[itex]\sqrt{(j \pm m ) (j \mp m+1} <j_1 j_2 m_1 m_2 | j_1 j_2 j m\mp 1 > = \sqrt{(j_1 \mp m_1 ) (j_1 \pm m_1+1} <j_1 j_2 m_1 \pm1, m_2 | j_1 j_2 j m > +\sqrt{(j_2 \mp m_2 ) (j_2 \pm m_2+1} <j_1 j_2 m_1 , m_2 \pm1 | j_1 j_2 j m > [/itex]
Wigner 3-j symbols are related to Clebsch–Gordan coefficients through
[itex]\begin{pmatrix}
j_1 & j_2 & j_3\\
m_1 & m_2 & m_3
\end{pmatrix}
\equiv \frac{(-1)^{j_1-j_2-m_3}}{\sqrt{2j_3+1}} \langle j_1 m_1 j_2 m_2 | j_3 \, {-m_3} \rangle [/itex]
[itex]j_3=j, m_3=m [/itex]
I've tried to put each term [itex] <j_1 j_2 m_1 \pm1, m_2 | j_1 j_2 j m > [/itex] and [itex] <j_1 j_2 m_1 , m_2 \pm1 | j_1 j_2 j m > [/itex] on the matrix form , but I don't know how i can get the square roots, any idea?
thanks in advance
Homework Statement
I have to show:
[itex]\sqrt{(j \pm m ) (j \mp m+1} <j_1 j_2 m_1 m_2 | j_1 j_2 j m\mp 1 > = \sqrt{(j_1 \mp m_1 ) (j_1 \pm m_1+1} <j_1 j_2 m_1 \pm1, m_2 | j_1 j_2 j m > +\sqrt{(j_2 \mp m_2 ) (j_2 \pm m_2+1} <j_1 j_2 m_1 , m_2 \pm1 | j_1 j_2 j m > [/itex]
Homework Equations
Wigner 3-j symbols are related to Clebsch–Gordan coefficients through
[itex]\begin{pmatrix}
j_1 & j_2 & j_3\\
m_1 & m_2 & m_3
\end{pmatrix}
\equiv \frac{(-1)^{j_1-j_2-m_3}}{\sqrt{2j_3+1}} \langle j_1 m_1 j_2 m_2 | j_3 \, {-m_3} \rangle [/itex]
[itex]j_3=j, m_3=m [/itex]
The Attempt at a Solution
I've tried to put each term [itex] <j_1 j_2 m_1 \pm1, m_2 | j_1 j_2 j m > [/itex] and [itex] <j_1 j_2 m_1 , m_2 \pm1 | j_1 j_2 j m > [/itex] on the matrix form , but I don't know how i can get the square roots, any idea?
thanks in advance