- #1
Goddar
- 205
- 16
Hi. I'm reviewing some past qualifying exams and stumbled on something i can't figure out, probably because I'm still confused about the Wigner-Eckart theorem..
So, the set-up is just degenerate perturbation theory for constant electric field along z on the n = 2 hydrogen states. That's a classic, so i don't have a problem with it: states [200] and [210] emerge in linear combinations, with energy levels split at ±3u (u = Bohr radius times eE) from the n = 2 level. [21±1] are unaffected.
Penultimate question is: "Assuming that the atom is in its ground state and the light is polarized in z- direction, determine frequencies of spectral lines in the absorption spectrum, which will be observed, and their relative strength"
That doesn't seem hard either: jumps from the ground state imply absorption of ΔE or ΔE±3u, where ΔE is the energy difference between ground state and n = 2; frequency is given by E = hf. Then ΔE absorption should be twice the intensity of any of the two others.
Finally the one I'm stuck on: "Can Stark effect be observed with x-polarized light? Give arguments based on Wigner- Eckart theorem"
First of all, what's the deal about x-polarized here and why does it make a difference?
Then, it seems like the electric field ruins the spherical symmetry so how can we use Wigner-Eckart at all?
Maybe just on the [21±1] states?
If we can use it, then how?...Is it the selection rules that prevent [21±1] from being affected?
Thank you in advance..
So, the set-up is just degenerate perturbation theory for constant electric field along z on the n = 2 hydrogen states. That's a classic, so i don't have a problem with it: states [200] and [210] emerge in linear combinations, with energy levels split at ±3u (u = Bohr radius times eE) from the n = 2 level. [21±1] are unaffected.
Penultimate question is: "Assuming that the atom is in its ground state and the light is polarized in z- direction, determine frequencies of spectral lines in the absorption spectrum, which will be observed, and their relative strength"
That doesn't seem hard either: jumps from the ground state imply absorption of ΔE or ΔE±3u, where ΔE is the energy difference between ground state and n = 2; frequency is given by E = hf. Then ΔE absorption should be twice the intensity of any of the two others.
Finally the one I'm stuck on: "Can Stark effect be observed with x-polarized light? Give arguments based on Wigner- Eckart theorem"
First of all, what's the deal about x-polarized here and why does it make a difference?
Then, it seems like the electric field ruins the spherical symmetry so how can we use Wigner-Eckart at all?
Maybe just on the [21±1] states?
If we can use it, then how?...Is it the selection rules that prevent [21±1] from being affected?
Thank you in advance..